4,524 research outputs found

    Fracture surface analysis in composite and titanium bonding

    Get PDF
    Carbon fibers were obtained from several manufacturers. Surface treatments were performed on these fibers by anodization. The surfaces of these fibers were analyzed by X-ray photoelectron spectroscopy and wetting force measurement. The breaking strength of these fibers was measured at 2.5 cm length. It was seen that the surface treatments reduces the strength of the fibers. It was also seen that the Hercules fibers had a higher breaking strength than the Union Carbide fibers. Fiber critical length measurements showed no difference in critical lengths between AS-4 and AU-4 fibers embedded in polysulfone. However, the fiber lengths were much shorter for the surface treated fibers. This effect could be related to increased adhesion between fiber and matrix, or it could be due to the lower breaking strength of the surface treated fiber

    Surface characterization in composite and titanium bonding

    Get PDF
    The failure surface analysis of adhesively bonded carbon fiber composites is described. The emphasis is on the bonding of composites when the surface has been made intentionally resin-rich. Also discussed is surface analysis of both commercially available and pretreated carbon fibers. The interaction of the fibers with polysulfone is described

    Surface characterization of selected LDEF tray clamps

    Get PDF
    The surface characterization of chromic acid anodized 6061-T6 aluminum alloy tray clamps has shown differences in surface chemistry depending upon the position on the Long Duration Exposure Facility (LDEF). Water contact angle results showed no changes in wettability of the tray clamps. The overall surface topography of the control, trailing edge(E3) and leading edge(D9) samples was similar. The thickness of the aluminum oxide layer for all samples determined by Auger depth profiling was less than one micron. X-ray photoelectron spectroscopy (XPS) analysis of the tray clamps showed significant differences in the surface composition. Carbon and silicon containing compounds were the primary contaminants detected

    VAPB/ALS8 interacts with FFAT-like proteins including the p97 cofactor FAF1 and the ASNA1 ATPase

    Get PDF
    BACKGROUND: FAF1 is a ubiquitin-binding adaptor for the p97 ATPase and belongs to the UBA-UBX family of p97 cofactors. p97 converts the energy derived from ATP hydrolysis into conformational changes of the p97 hexamer, which allows the dissociation of its targets from cellular structures or from larger protein complexes to facilitate their ubiquitin-dependent degradation. VAPB and the related protein VAPA form homo- and heterodimers that are anchored in the endoplasmic reticulum membrane and can interact with protein partners carrying a FFAT motif. Mutations in either VAPB or p97 can cause amyotrophic lateral sclerosis, a neurodegenerative disorder that affects upper and lower motor neurons. RESULTS: We show that FAF1 contains a non-canonical FFAT motif that allows it to interact directly with the MSP domain of VAPB and, thereby, to mediate VAPB interaction with p97. This finding establishes a link between two proteins that can cause amyotrophic lateral sclerosis when mutated, VAPB/ALS8 and p97/ALS14. Subsequently, we identified a similar FFAT-like motif in the ASNA1 subunit of the transmembrane-domain recognition complex (TRC), which in turn mediates ASNA1 interaction with the MSP domain of VAPB. Proteasome inhibition leads to the accumulation of ubiquitinated species in VAPB immunoprecipitates and this correlates with an increase in FAF1 and p97 binding. We found that VAPB interaction with ubiquitinated proteins is strongly reduced in cells treated with FAF1 siRNA. Our efforts to determine the identity of the ubiquitinated targets common to VAPB and FAF1 led to the identification of RPN2, a subunit of an oligosaccharyl-transferase located at the endoplasmic reticulum, which may be regulated by ubiquitin-mediated degradation. CONCLUSIONS: The FFAT-like motifs we identified in FAF1 and ASNA1 demonstrate that sequences containing a single phenylalanine residue with the consensus (D/E)(D/E)FEDAx(D/E) are also proficient to mediate interaction with VAPB. Our findings indicate that the repertoire of VAPB interactors is more diverse than previously anticipated and link VAPB to the function of ATPase complexes such as p97/FAF1 and ASNA1/TRC

    Surface characterization in composite and titanium bonding: Carbon fiber surface treatments for improved adhesion to thermoplastic polymers

    Get PDF
    The effect of anodization in NaOH, H2SO4, and amine salts on the surface chemistry of carbon fibers was examined by X-ray photoelectron spectroscopy (XPS). The surfaces of carbon fibers after anodization in NaOH and H2SO4 were examined by scanning transmission electron microscopy (STEM), angular dependent XPS, UV absorption spectroscopy of the anodization bath, secondary ion mass spectrometry, and polar/dispersive surface energy analysis. Hercules AS-4, Dexter Hysol XAS, and Union Carbide T-300 fibers were examined by STEM, angular dependent XPS, and breaking strength measurement before and after commercial surface treatment. Oxygen and nitrogen were added to the fiber surfaces by anodization in amine salts. Analysis of the plasmon peak in the carbon 1s signal indicated that H2SO4 anodization affected the morphological structure of the carbon fiber surface. The work of adhesion of carbon fibers to thermoplastic resins was calculated using the geometric mean relationship. A correlation was observed between the dispersive component of the work of adhesion and the interfacial adhesion

    Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells

    Get PDF
    The process by which plant cells expand and gain shape has presented a challenge for researchers. Current models propose that these processes are driven by turgor pressure acting on the cell wall. Using nanoimaging, we show that the cell wall contains pectin nanofilaments that possess an intrinsic expansion capacity. Additionally, we use growth models containing such structures to show that a complex plant cell shape can derive from chemically induced local and polarized expansion of the pectin nanofilaments without turgor-driven growth. Thus, the plant cell wall, outside of the cell itself, is an active participant in shaping plant cells. Extracellular matrix function may similarly guide cell shape in other kingdoms, including Animalia

    Foundations for Relativistic Quantum Theory I: Feynman's Operator Calculus and the Dyson Conjectures

    Full text link
    In this paper, we provide a representation theory for the Feynman operator calculus. This allows us to solve the general initial-value problem and construct the Dyson series. We show that the series is asymptotic, thus proving Dyson's second conjecture for QED. In addition, we show that the expansion may be considered exact to any finite order by producing the remainder term. This implies that every nonperturbative solution has a perturbative expansion. Using a physical analysis of information from experiment versus that implied by our models, we reformulate our theory as a sum over paths. This allows us to relate our theory to Feynman's path integral, and to prove Dyson's first conjecture that the divergences are in part due to a violation of Heisenberg's uncertainly relations

    "Massless" vector field in de Sitter Universe

    Get PDF
    In the present work the massless vector field in the de Sitter (dS) space has been quantized. "Massless" is used here by reference to conformal invariance and propagation on the dS light-cone whereas "massive" refers to those dS fields which contract at zero curvature unambiguously to massive fields in Minkowski space. Due to the gauge invariance of the massless vector field, its covariant quantization requires an indecomposable representation of the de Sitter group and an indefinite metric quantization. We will work with a specific gauge fixing which leads to the simplest one among all possible related Gupta-Bleuler structures. The field operator will be defined with the help of coordinate independent de Sitter waves (the modes) which are simple to manipulate and most adapted to group theoretical matters. The physical states characterized by the divergencelessness condition will for instance be easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemanian manifold for the modes and the two-point function.Comment: 33 pages, 3 figure

    Interacting Vector-Spinor and Nilpotent Supersymmetry

    Full text link
    We formulate an interacting theory of a vector-spinor field that gauges anticommuting spinor charges \{Q_\alpha{}^I, Q_\beta{}^J \} = 0 in arbitrary space-time dimensions. The field content of the system is (\psi_\mu{}^{\alpha I}, \chi^{\alpha I J}, A_\mu{}^I), where \psi_\mu{}^{\alpha I} is a vector-spinor in the adjoint representation of an arbitrary gauge group, and A_\mu{}^I is its gauge field, while \chi^{\alpha I J} is an extra spinor with antisymmetric adjoint indices I J. Amazingly, the consistency of the vector-spinor field equation is maintained, despite its non-trivial interactions.Comment: 10 pages, no figure

    Relativistic Operator Description of Photon Polarization

    Full text link
    We present an operator approach to the description of photon polarization, based on Wigner's concept of elementary relativistic systems. The theory of unitary representations of the Poincare group, and of parity, are exploited to construct spinlike operators acting on the polarization states of a photon at each fixed energy momentum. The nontrivial topological features of these representations relevant for massless particles, and the departures from the treatment of massive finite spin representations, are highlighted and addressed.Comment: Revtex 9 page
    corecore