52 research outputs found

    Lee Silverman Voice Treatment versus standard speech and language therapy versus control in Parkinson’s disease: a pilot randomised controlled trial (PD COMM pilot)

    Get PDF
    Background: Speech-related problems are common in Parkinson’s disease (PD), but there is little evidence for the effectiveness of standard speech and language therapy (SLT) or Lee Silverman Voice Treatment (LSVT LOUD®). Methods: The PD COMM pilot was a three-arm, assessor-blinded, randomised controlled trial (RCT) of LSVT LOUD®, SLT and no intervention (1:1:1 ratio) to assess the feasibility and to inform the design of a full-scale RCT. Non-demented patients with idiopathic PD and speech problems and no SLT for speech problems in the past 2 years were eligible. LSVT LOUD® is a standardised regime (16 sessions over 4 weeks). SLT comprised individualised content per local practice (typically weekly sessions for 6–8 weeks). Outcomes included recruitment and retention, treatment adherence, and data completeness. Outcome data collected at baseline, 3, 6, and 12 months included patient-reported voice and quality of life measures, resource use, and assessor-rated speech recordings. Results: Eighty-nine patients were randomised with 90% in the therapy groups and 100% in the control group completing the trial. The response rate for Voice Handicap Index (VHI) in each arm was ≥ 90% at all time-points. VHI was highly correlated with the other speech-related outcome measures. There was a trend to improvement in VHI with LSVT LOUD® (difference at 3 months compared with control: − 12.5 points; 95% CI − 26.2, 1.2) and SLT (difference at 3 months compared with control: − 9.8 points; 95% CI − 23.2, 3.7) which needs to be confirmed in an adequately powered trial. Conclusion: Randomisation to a three-arm trial of speech therapy including a no intervention control is feasible and acceptable. Compliance with both interventions was good. VHI and other patient-reported outcomes were relevant measures and provided data to inform the sample size for a substantive trial

    Genetics and identification of markers linked to multiflorous spikelet in hexaploid oat

    Get PDF
    The formation of naked grains is directly associated with the formation of multiflorous spikelets in oats. The objectives of this study were to determine the genetics of multiflorous spikelet and to identify molecular markers linked to this character in hexaploid oat. Genetic analysis for multiflorous spikelet was performed in the F5 and F6 generations of two oat populations. DNA extracted from F5:6 plants were assayed with 6,000 genome-wide single nucleotide polymorphism (SNP) markers using a genotyping platform developed for oat. Genetic analysis indicated the presence of a major gene controlling multiflorous spikelet in the UFRGS 01B7114-1-3 x UFRGS 006013-1 population. The SNP marker GMI_ES17_c5923_221 showed strong association with the multiflorous spikelet phenotype. These results suggest that the marker GMI_ES17_c5923_221 should be linked to a gene controlling multiflorous spikelet in the oat lines evaluated in this study

    Model SNP development for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic markers are pivotal to modern genomics research; however, discovery and genotyping of molecular markers in oat has been hindered by the size and complexity of the genome, and by a scarcity of sequence data. The purpose of this study was to generate oat expressed sequence tag (EST) information, develop a bioinformatics pipeline for SNP discovery, and establish a method for rapid, cost-effective, and straightforward genotyping of SNP markers in complex polyploid genomes such as oat.</p> <p>Results</p> <p>Based on cDNA libraries of four cultivated oat genotypes, approximately 127,000 contigs were assembled from approximately one million Roche 454 sequence reads. Contigs were filtered through a novel bioinformatics pipeline to eliminate ambiguous polymorphism caused by subgenome homology, and 96 <it>in silico </it>SNPs were selected from 9,448 candidate loci for validation using high-resolution melting (HRM) analysis. Of these, 52 (54%) were polymorphic between parents of the Ogle1040 × TAM O-301 (OT) mapping population, with 48 segregating as single Mendelian loci, and 44 being placed on the existing OT linkage map. Ogle and TAM amplicons from 12 primers were sequenced for SNP validation, revealing complex polymorphism in seven amplicons but general sequence conservation within SNP loci. Whole-amplicon interrogation with HRM revealed insertions, deletions, and heterozygotes in secondary oat germplasm pools, generating multiple alleles at some primer targets. To validate marker utility, 36 SNP assays were used to evaluate the genetic diversity of 34 diverse oat genotypes. Dendrogram clusters corresponded generally to known genome composition and genetic ancestry.</p> <p>Conclusions</p> <p>The high-throughput SNP discovery pipeline presented here is a rapid and effective method for identification of polymorphic SNP alleles in the oat genome. The current-generation HRM system is a simple and highly-informative platform for SNP genotyping. These techniques provide a model for SNP discovery and genotyping in other species with complex and poorly-characterized genomes.</p
    corecore