190 research outputs found

    The Environmental Effects of Global Changes on Northeast Central Europe in the Case of Non-Modified Agricultural Management

    Get PDF
    Climate impact scenarios for agriculture usually consider yield development, landscape water balance, nutrient dynamics or the endangerment of habitats separately. Scenario results are further limited by roughly discriminated land use types at low spatial resolution or they are restricted to single sites and isolated crops. Here, we exemplify a well data based comprehensive sensitivity analysis of a drought endangered agrarian region in Northeast Germany using a 2050 climate scenario. Coherently modelled results on water balance and yields indicate that agricultural production may persist, whereas wetlands and groundwater production will be negatively affected. The average percolation rate decreases from 143 mm a-1 to 12 mm a-1, and the average yield decline broken down by crops ranges from 4% for summer wheat to 14% for potatoes (main cereals: 5%)

    What are the effects of climate change on agriculture in North East Central Europe?

    Get PDF
    Global and climate changes influence the basic conditions for agriculture and so there is not only a demand for a consequent climate protection but also for an adaptation of agriculture to these global changing conditions. For the whole "Maerkisch-Oderland" district (60x40 km) within the moraine landscape of North-East-Germany mainly used for agriculture water balance, nitrogen and sulphur loads as well as crop yields are calculated for two land use and climate scenarios. The comparison between the Scenario2050 and the Scenario2000 reveals significant changes of the water balance (decrease in percolation water, increase in actual evapotranspiration) as well as the concentration of the examined nitrogen in the percolation water. For the study region the crop yields decrease only slightly if the CO2 fertilizing effect is taken into account. Adaptation measures in reaction to the changing climate conditions for an economically secured and sustainable agriculture are recommended.climate change impact assessment, water balance, nitrogen load, crop yield, moraine landscape, Environmental Economics and Policy, Farm Management,

    Factors Affecting European Farmers’Participation in Biodiversity Policies

    Get PDF
    This article reports the major findings from an interdisciplinary research project that synthesises key insights into farmers’ willingness and ability to co-operate with biodiversity policies. The results of the study are based on an assessment of about 160 publications and research reports from six EU member states and from international comparative research.We developed a conceptual framework to systematically review the existent literature relevant for our purposes. This framework provides a common structure for analysing farmers’ perspectives regarding the introduction into farming practices of measures relevant to biodiversity. The analysis is coupled and contrasted with a survey of experts. The results presented above suggest that it is important to view support for practices oriented towards biodiversity protection not in a static sense – as a situation determined by one or several influencing factors – but rather as a process marked by interaction. Financial compensation and incentives function as a necessary, though clearly not sufficient condition in this process

    Forbidden dark matter annihilation into leptons with full collision terms

    Full text link
    The standard approach of calculating the relic density of thermally produced dark matter based on the assumption of kinetic equilibrium is known to fail for forbidden dark matter models since only the high momentum tail of the dark matter phase space distribution function contributes significantly to dark matter annihilations. Furthermore, it is known that the computationally less expensive Fokker-Planck approximation for the collision term describing elastic scattering processes between non-relativistic dark matter particles and the Standard Model thermal bath breaks down if both scattering partners are close in mass. This, however, is the defining feature of the forbidden dark matter paradigm. In this paper, we therefore include the full elastic collision term in the full momentum-dependent Boltzmann equation as well as in a set of fluid equations that couple the evolution of the number density and dark matter temperature for a simplified model featuring forbidden dark matter annihilations into muon or tau leptons through a scalar mediator. On the technical side, we perform all angular integrals in the full collision term analytically and take into account the effect of dark matter self-interactions on the relic density. The overall phenomenological outcome is that the updated relic density calculation results in a significant reduction of the experimentally allowed parameter space compared to the traditional approach, which solves only for the abundance. In addition, almost the entire currently viable parameter space can be probed with CMB-S4, next-generation beam-dump experiments or at a future high-luminosity electron-position collider, except for the resonant region where the mediator corresponds to approximately twice the muon or tau mass.Comment: 23 pages, 6 figure

    Neutrino masses and mixing from milli-charged dark matter

    Full text link
    We propose a simple extension to the Standard Model, wherein neutrinos naturally attain small Majorana masses through a one-loop radiative mechanism featuring particles within the loops characterized by milli-charges. Unlike the conventional scotogenic model, our approach avoids imposing a discrete symmetry or expanding the gauge sector. The minuscule electric charges ensure the stability of the lightest particle within the loop as a viable dark matter candidate. Our investigation systematically scrutinizes the far-reaching phenomenological implications arising from these minuscule charges.Comment: 9 pages + references, 7 figure

    The dipole formalism for massive initial-state particles and its application to dark matter calculations

    Full text link
    The dark matter abundance plays a crucial role in the determination of the valid parameter space of models both in case of a discovery of dark matter and in the context of exclusion limits. Reliable theoretical predictions of the dark matter relic density require technically demanding precision calculations, which were so far limited in their automation due to challenges in the treatment of infrared divergences appearing in higher order calculations. In particular, massive initial states need to be considered in early Universe computations, so that the known dipole subtraction methods could not be directly exploited. We therefore provide a full generalization of the dipole subtraction method by Catani and Seymour to (SUSY)-QCD with massive initial states. All dipole splitting functions and their integrated counterparts are given explicitly for four different dimensional schemes. To showcase their application, we apply our results to dark matter (co)-annihilation processes in the context of the Minimal Supersymmetric (SUSY) Standard Model (MSSM). We also demonstrate the accuracy of the dipole method by comparing our numerical results with those obtained with the space space slicing method. Our analytical results will facilitate future automation of dark matter abundance calculations at next-to-leading order for both SUSY and non-SUSY models.Comment: 42 pages, 8 figures, 3 table

    Toward a common understanding of ocean multi-use

    Get PDF
    The “open ocean” has become a highly contested space as coastal populations and maritime uses soared in abundance and intensity over the last decades. Changing marine utilization patterns represent a considerable challenge to society and governments. Maritime spatial planning has emerged as one tool to manage conflicts between users and achieve societal goals for the use of marine space; however, single-sector management approaches are too often still the norm. The last decades have seen the rise of a new ocean use concept: the joint “multi-use” of ocean space. This paper aims to explain and refine the concept of ocean multi-use of space by reviewing the development and state of the art of multi-use in Europe and presenting a clear definition and a comprehensive typology for existing multi-use combinations. It builds on the connectivity of uses and users in spatial, temporal, provisional, and functional dimensions as the underlying key characteristic of multi-use dimensions. Combinations of these dimensions yield four distinct types of multi-use with little overlap between them. The diversity of types demonstrates that there is no one-size-fits-all management approach, but rather that adaptive management plans are needed, focusing on achieving the highest societal benefit while minimizing conflicts. This work will help to sharpen, refine and advance the public and academic discourse over marine spatial planning by offering a common framework to planners, researchers and users alike, when discussing multi-use and its management implications
    corecore