6 research outputs found
Genetic insights into the introduction history of black rats into the eastern Indian Ocean
Islands can be powerful demonstrations of how destructive invasive species can be on endemic faunas and insular ecologies. Oceanic islands in the eastern Indian Ocean have suffered dramatically from the impact of one of the world’s most destructive invasive species, the black rat, causing the loss of endemic terrestrial mammals and ongoing threats to ground-nesting birds. We use molecular genetic methods on both ancient and modern samples to establish the origins and minimum invasion frequencies of black rats on Christmas Island and the Cocos-Keeling Islands. We find that each island group had multiple incursions of black rats from diverse geographic and phylogenetic sources. Furthermore, contemporary black rat populations on these islands are highly admixed to the point of potentially obscuring their geographic sources. These hybridisation events between black rat taxa also pose potential dangers to human populations on the islands from novel disease risks. Threats of ongoing introductions from yet additional geographic sources is highlighted by genetic identifications of black rats found on ships, which provides insight into how recent ship-borne human smuggling activity to Christmas Island can negatively impact its endemic species.Vicki A. Thomson, Andrew S. Wiewel, Russell Palmer, Neil Hamilton, Dave Algar, Caitlyn Pink, Harriet Mills, Ken P. Aplin, Geoffrey Clark, Atholl Anderson, Michael B. Herrera, Steven Myers, Terry Bertozzi, Philip J. Piper, Hitoshi Suzuki, and Steve Donnella
A perspective for resolving the systematics of Rattus, the vertebrates with the most influence on human welfare
The murid rodent genus Rattus Fischer 1803 contains several species that are responsible for massive loss of crops and food, extinction of other species and the spread of zoonotic diseases to humans, as well as a laboratory species used to answer important questions in physiology, immunology, pharmacology, toxicology, nutrition, behaviour and learning. Despite the well-known significant impacts of Rattus, a definitive evolutionary based systematic framework for the genus is not yet available. The past 75 years have seen more dramatic changes in membership of Rattus than in almost any other genus of mammals. In fact, the Rattus genus has been a receptacle for any generalised Old World murine that lacked morphological specialisation and at one point, has included more than 560 species and/or subspecies, spread across Eurasia, Africa and the Australo-Papuan region. The dissolution of Rattus is ongoing as many of its constituent species and many genera of Rattini remain unsampled in any molecular study. To address this sampling limitation, we sequenced the mitochondrial cytochrome b (cytb) gene and examined phylogenetic relationships using both Bayesian and Maximum Likelihood algorithms for an expanded set of taxa within Rattus and among closely related genera. Here we place previously unsampled taxa in a phylogenetic context for the first time, including R. burrus, R. hoogerwerfi, R. lugens, and R. mindorensis within the Asian Rattus group, R. facetus within the Australo-Papuan Rattus radiation, and the undescribed ‘Bisa Rat’ described by Flannery as sister to the recently described genus Halmaheramys. We also present an exploratory foray into the wider topic of Rattus phylogenetics and propose that a reorganisation of the Rattus genus should require that it be a monophyletic group, include at least the type species R. norvegicus and R. rattus (plus their close allies); and exclude the Bandicota/Nesokia clade and other such specialised genera.Vicki Thomson, Andrew Wiewel, Aldo Chinen, Ibnu Maryanto, M.H. Sinaga, Ric How, Ken Aplin, Hitoshi Suzuk
Assessment and determinants of whole blood and plasma fibrinolysis in patients with mild bleeding symptoms
Enhanced clot lysis is associated with bleeding, but assessment of lysis capacity remains difficult. The plasma turbidity lysis and whole blood tissue Plasminogen Activator-Rotational Thromboelastometry (tPA-ROTEM) assays estimate fibrinolysis under more physiological conditions than clinically used assays. We hypothesized that these assays could find signs of enhanced lysis capacity in patients who report bleeding symptoms, but are not diagnosed with bleeding disorders. We also aimed to gain insight in determinants of the results of these lysis assays. Data from 240 patients with and 95 patients without self-reported bleeding symptoms were obtained, who were included in a study that primarily aimed to assess prevalence of haemostaticabnormalities in preoperative patients. ROTEM and turbidity assays were performed with rtPA. Blood counts, fibrinolysis and coagulation factor activities were determined. Data were analysed using multivariable linear regression models. Remarkably, patients reporting bleeding symptoms showed signs of significantly impaired lysis capacity in the tPA-ROTEM, but not in the turbidity lysis assay. In these patients, the tPA-ROTEM results depended on FII, FXII, plasminogen, α2-antiplasmin, PAI-1 and TAFI levels. The turbidity lysis results were significantly influenced by fibrinogen, α2-antiplasmin, PAI-1 and TAFI. In conclusion, the tPA-ROTEM and the turbidity lysis assay could not detect enhanced fibrinolytic capacity in patients with bleeding symptoms. This suggests that these symptoms are not caused by enhanced fibrinolytic activity. As both assays were sensitive to important determinants of fibrinolysis they may be able to detect a fibrinolytic imbalance, but this needs to be validated in patients with known hypo- or hyperfibrinolytic disorders