17 research outputs found

    THE MANTECA YELLOW BEAN: A GENETIC RESOURCE OF FAST COOKING AND HIGH IRON BIOAVAILABILITY PHENOTYPES FOR THE NEXT GENERATION OF DRY BEANS (\u3ci\u3ePhaseolus vulgaris\u3c/i\u3e L.)

    Get PDF
    Dry beans (Phaseolus vulgaris L.) are a nutrient dense food produced globally as a major pulse crop for direct human consumption. Despite being rich in protein and micronutrients, long cooking times limit the use of dry beans worldwide, especially in regions relying on wood and charcoal as the primary sources of fuel for cooking, such as Sub-Sahara Africa and the Caribbean. Coincidently, these same regions also have high densities of women and children at risk for micronutrient deficiencies [1]. There is need for a fast cooking bean, which can positively impact consumers by reducing fuel cost and preparation time, while simultaneously complementing the nutritional quality of house-hold based meals [2]. To help accelerate a reliable increase in dry bean production for Sub-Saharan Africa, the Andean Bean Diversity Panel (ADP; http://arsftfbean.uprm.edu/bean/) was assembled as a genetic resource in the development of fast cooking, nutritional improved, biotic/abiotic resistant varieties. A germplasm screening for atmospheric cooking time (100oC) of over 200 bean accessions from the ADP identified only five fast cooking entries [3]. Two entries were white beans from Burundi (Blanco Fanesquero) and Ecuador (PI527521). Native to Chile, two of the six fast cooking entries were collected from Angola, and had a pale lemon ‘Manteca’ yellow seed color (Cebo, Mantega Blanca). Traditional knowledge from Chile suggests Manteca yellow beans are low flatulence and easy to digest [4]. Yellow beans of various shades are important in Eastern and Southern Africa. Their popularity has increased in recent years and they often fetch the highest prices at the marketplace. There is evidence to suggest that Manteca yellow beans have a unique nutritional profile when compared to other yellow seed types; with more soluble dietary fiber, less indigestible protein and starch, and are also free of condensed tannins. The hypothesis was tested that this unique composition would also have a positive influence on the bioavailability of iron in an in vitro digestion/Caco-2 cell culture bioassay

    The role of genotype and production environment in determining the cooking time of dry beans (\u3ci\u3ePhaseolus vulgaris\u3c/i\u3e L.)

    Get PDF
    Dry bean (Phaseolus vulgaris L.) is a nutrient‐dense food rich in proteins and minerals. Although a dietary staple in numerous regions, including Eastern and Southern Africa, greater utilization is limited by its long cooking time as compared with other staple foods. A fivefold genetic variability for cooking time has been identified for P. vulgaris, and to effectively incorporate the cooking time trait into bean breeding programs, knowledge of how genotypes behave across diverse environments is essential. Fourteen bean genotypes selected from market classes important to global consumers (yellow, cranberry, light red kidney, red mottled, and brown) were grown in 10 to 15 environments (combinations of locations, years, and treatments), and their cooking times were measured when either presoaked or unsoaked prior to boiling. The 15 environments included locations in North America, the Caribbean, and Eastern and Southern Africa that are used extensively for dry bean breeding. The cooking times of the 14 presoaked dry bean genotypes ranged from 16 to 156 min, with a mean of 86 min across the 15 production environments. The cooking times of the 14 dry bean genotypes left unsoaked ranged from 77 to 381 min, with a mean cooking time of 113 min. The heritability of the presoaked cooking time was very high (98%) and moderately high for the unsoaked cooking time (~60%). The genotypic cooking time patterns were stable across environments. There was a positive correlation between the presoaked and unsoaked cooking times (r = .64, p \u3c 0.0001), and two of the fastest cooking genotypes when presoaked were also the fastest cooking genotypes when unsoaked (G1, Cebo, yellow bean; and G4, G23086, cranberry bean). Given the sufficient genetic diversity found, limited crossover Genotype × Environment interactions, and high heritability for cooking time, it is feasible to develop fast cooking dry bean varieties without the need for extensive testing across environments

    The role of genotype and production environment in determining the cooking time of dry beans (\u3ci\u3ePhaseolus vulgaris\u3c/i\u3e L.)

    Get PDF
    Dry bean (Phaseolus vulgaris L.) is a nutrient‐dense food rich in proteins and minerals. Although a dietary staple in numerous regions, including Eastern and Southern Africa, greater utilization is limited by its long cooking time as compared with other staple foods. A fivefold genetic variability for cooking time has been identified for P. vulgaris, and to effectively incorporate the cooking time trait into bean breeding programs, knowledge of how genotypes behave across diverse environments is essential. Fourteen bean genotypes selected from market classes important to global consumers (yellow, cranberry, light red kidney, red mottled, and brown) were grown in 10 to 15 environments (combinations of locations, years, and treatments), and their cooking times were measured when either presoaked or unsoaked prior to boiling. The 15 environments included locations in North America, the Caribbean, and Eastern and Southern Africa that are used extensively for dry bean breeding. The cooking times of the 14 presoaked dry bean genotypes ranged from 16 to 156 min, with a mean of 86 min across the 15 production environments. The cooking times of the 14 dry bean genotypes left unsoaked ranged from 77 to 381 min, with a mean cooking time of 113 min. The heritability of the presoaked cooking time was very high (98%) and moderately high for the unsoaked cooking time (~60%). The genotypic cooking time patterns were stable across environments. There was a positive correlation between the presoaked and unsoaked cooking times (r = .64, p \u3c 0.0001), and two of the fastest cooking genotypes when presoaked were also the fastest cooking genotypes when unsoaked (G1, Cebo, yellow bean; and G4, G23086, cranberry bean). Given the sufficient genetic diversity found, limited crossover Genotype × Environment interactions, and high heritability for cooking time, it is feasible to develop fast cooking dry bean varieties without the need for extensive testing across environments

    The Fast Cooking and Enhanced Iron Bioavailability Properties of the Manteca Yellow Bean (Phaseolus vulgaris L.)

    No full text
    The common dry bean (Phaseolus vulgaris L.) is a nutrient-dense pulse crop that is produced globally for direct human consumption and is an important source of protein and micronutrients for millions of people across Latin America, the Caribbean and Sub-Saharan Africa. Dry beans require large amounts of heat energy and time to cook, which can deter consumers worldwide from using beans. In regions where consumers rely on expensive fuelwood for food preparation, the yellow bean is often marketed as fast cooking. This study evaluated the cooking time and health benefits of five major market classes within the yellow bean seed type (Amarillo, Canary, Manteca, Mayocoba, Njano) over two field seasons. This study shows how the Manteca yellow bean possesses a fast cooking phenotype, which could serve as genetic resource for introducing fast cooking properties into a new generation of dry beans with cooking times <20 min when pre-soaked and <80 min unsoaked. Mineral analysis revealed fast cooking yellow beans have high iron retention (>80%) after boiling. An in vitro digestion/Caco-2 cell culture bioassay revealed a strong negative association between cooking time and iron bioavailability in yellow beans with r values = −0.76 when pre-soaked and −0.64 when unsoaked across the two field seasons. When either pre-soaked or left unsoaked, the highest iron bioavailability scores were measured in the fast cooking Manteca genotypes providing evidence that this yellow market class is worthy of germplasm enhancement through the added benefit of improved iron quality after cooking

    THE MANTECA YELLOW BEAN: A GENETIC RESOURCE OF FAST COOKING AND HIGH IRON BIOAVAILABILITY PHENOTYPES FOR THE NEXT GENERATION OF DRY BEANS (\u3ci\u3ePhaseolus vulgaris\u3c/i\u3e L.)

    Get PDF
    Dry beans (Phaseolus vulgaris L.) are a nutrient dense food produced globally as a major pulse crop for direct human consumption. Despite being rich in protein and micronutrients, long cooking times limit the use of dry beans worldwide, especially in regions relying on wood and charcoal as the primary sources of fuel for cooking, such as Sub-Sahara Africa and the Caribbean. Coincidently, these same regions also have high densities of women and children at risk for micronutrient deficiencies [1]. There is need for a fast cooking bean, which can positively impact consumers by reducing fuel cost and preparation time, while simultaneously complementing the nutritional quality of house-hold based meals [2]. To help accelerate a reliable increase in dry bean production for Sub-Saharan Africa, the Andean Bean Diversity Panel (ADP; http://arsftfbean.uprm.edu/bean/) was assembled as a genetic resource in the development of fast cooking, nutritional improved, biotic/abiotic resistant varieties. A germplasm screening for atmospheric cooking time (100oC) of over 200 bean accessions from the ADP identified only five fast cooking entries [3]. Two entries were white beans from Burundi (Blanco Fanesquero) and Ecuador (PI527521). Native to Chile, two of the six fast cooking entries were collected from Angola, and had a pale lemon ‘Manteca’ yellow seed color (Cebo, Mantega Blanca). Traditional knowledge from Chile suggests Manteca yellow beans are low flatulence and easy to digest [4]

    Extrusion and drying temperatures enhance sensory profile and iron bioavailability of dry bean pasta

    No full text
    Bean flour is a highly nutritive, plant-based ingredient with the potential for great utility in many food products. Heat treated flours produced from commercial varieties of white kidney, yellow and black beans, were processed into pastas using high/low extrusion and drying temperatures. Bean pastas made with high extrusion/high drying temperature (H/H) had more favorable sensory attributes and better texture than those made with high extrusion/low drying temperature (H/L). Whereas bean pastas made with low extrusion/low drying temperature (L/L) were unacceptable. H/H pastas favored longer cooking time (8.6 – 13.8 min) versus those extruded at lower temperature (5.0 – 5.7 min). High extrusion temperature (100 °C) with drying temperature high (90 °C) improved iron bioavailability from yellow and white kidney bean pastas, 12.7 and 15 ng ferritin/mg protein, respectively as compared to black bean pasta (0.9 ng ferritin/mg protein). Cultivar, extrusion and drying temperatures are critical for producing bean pastas with high iron bioavailability

    An In Vivo (Gallus gallus) Feeding Trial Demonstrating the Enhanced Iron Bioavailability Properties of the Fast Cooking Manteca Yellow Bean (Phaseolus vulgaris L.)

    No full text
    The common dry bean (Phaseolus vulgaris L.) is a globally produced pulse crop and an important source of micronutrients for millions of people across Latin America and Africa. Many of the preferred black and red seed types in these regions have seed coat polyphenols that inhibit the absorption of iron. Yellow beans are distinct from other market classes because they accumulate the antioxidant kaempferol 3-glucoside in their seed coats. Due to their fast cooking tendencies, yellow beans are often marketed at premium prices in the same geographical regions where dietary iron deficiency is a major health concern. Hence, this study compared the iron bioavailability of three faster cooking yellow beans with contrasting seed coat colors from Africa (Manteca, Amarillo, and Njano) to slower cooking white and red kidney commercial varieties. Iron status and iron bioavailability was assessed by the capacity of a bean based diet to generate and maintain total body hemoglobin iron (Hb-Fe) during a 6 week in vivo (Gallus gallus) feeding trial. Over the course of the experiment, animals fed yellow bean diets had significantly (p ≤ 0.05) higher Hb-Fe than animals fed the white or red kidney bean diet. This study shows that the Manteca yellow bean possess a rare combination of biochemical traits that result in faster cooking times and improved iron bioavailability. The Manteca yellow bean is worthy of germplasm enhancement to address iron deficiency in regions where beans are consumed as a dietary staple

    The effect of fish oil supplementation on brain DHA and EPA content and fatty acid profile in mice

    No full text
    <p>Supplementation with omega-3 (n-3) fatty acids may improve cognitive performance and protect against cognitive decline. However, changes in brain phospholipid fatty acid composition after supplementation with n-3 fatty acids are poorly described. The purpose of this study was to feed increasing n-3 fatty acids and characterise the changes in brain phospholipid fatty acid composition and correlate the changes with red blood cells (RBCs) and plasma in mice. Increasing dietary docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) did not alter brain DHA. Brain EPA increased and total n-6 polyunsaturated fatty acids decreased across treatment groups, and correlated with fatty acid changes in the RBC (<i>r</i> > 0.7). Brain <i>cis</i>-monounsaturated fatty acids oleic and nervonic acid (<i>p</i> < .01) and saturated fatty acids arachidic, behenic, and lignoceric acid (<i>p</i> < .05) also increased. These brain fatty acid changes upon increasing n-3 intake should be further investigated to determine their effects on cognition and neurodegenerative disease.</p

    HYP data 2014

    No full text
    MATLAB codes and representative pre-processed data files for model building and validation using dry bean seeds information from 2014

    Data from: Prediction of cooking time for soaked and unsoaked dry beans (Phaseolus vulgaris L.) using hyperspectral imaging technology

    No full text
    The cooking time of dry beans varies widely by genotype and is also influenced by the growing environment, storage conditions and cooking method. Thus, high throughput phenotyping methods to assess cooking time would be useful to breeders interested in developing cultivars with desired cooking time. The objective of this study was to evaluate the performance of hyperspectral imaging technology for predicting dry bean cooking time. Fourteen dry bean (Phaseolus vulgaris L.) genotypes with a wide range of cooking times were grown in five environments over 2 yr. Hyperspectral images were taken from whole dry seeds and partial least squares regression models based on the extracted spectral image features were developed to predict water uptake and cooking time of both soaked and unsoaked beans. Relatively good predictions of water uptake were obtained, as measured by the correlation coefficient for prediction (Rpred=0.789) and standard error of prediction (SEP=4.4%). Good predictions of cooking time for soaked beans (ranging between 19.9–95.5 min) were achieved giving Rpred=0.886 and SEP=7.9 min. The prediction models for the cooking time of unsoaked beans (ranging between 80–147 min) were less robust and accurate (Rpred=0.708, SEP=10.6 min). This study demonstrated that hyperspectral imaging technology has potential for providing a nondestructive, simple, fast and economical means for estimating the water uptake and cooking time of dry beans. Moreover, a totally independent set of 110 similar dry bean samples confirmed the suitability of the technique for predicting cooking time of soaked beans after updating the calibration model with 20 of the new samples, giving Rpred=0.872 and SEP=3.7 min. However, due to the genotypic and phenotypic variability of dry bean properties, periodical updates of these prediction models with more samples and new bean accessions, as well as testing other multivariate prediction methods are needed for further improving model robustness and generalization
    corecore