92 research outputs found

    Do healthcare financing privatisations curb total healthcare expenditures?

    Get PDF

    Policy induced increases in private healthcare financing provide short-term relief of total healthcare expenditure growth:Evidence from OECD

    Get PDF
    Healthcare reforms have long been advocated as a cure to the increasing healthcare expenditures in advanced economies. Nevertheless, it has not been established whether a market solution via private financing, rather than public financing, curb aggregate healthcare expenditures. To our knowledge, this paper is the first that quantifies the impact of reforms that significantly increases (decreases) the private (public) share of healthcare financing on total healthcare expenditures relative to income in 20 OECD countries. Our reform measure is based on structural break testing of the private share of total expenditures, and verification using evidence of policy reforms. To quantify the effect of these reforms we apply Propensity Score Matching and Inverse Probability Weighted regression analysis. Over a 5-year evaluation period the reforms lead to an accumulated cost saving 0.45 percentage points of GDP. The yearly effects of the reforms are largest in the first years in the post-reform period and decreases in size as a function of time since the reform. Our findings suggest that the investigated healthcare reforms have a relatively short-lived effect on aggregate health spending relative to GDP. The findings are robust to various sensitivity tests

    A General Strategy for Performing Temperature Programming in High Performance Liquid Chromatography

    Get PDF
    The use of elevated temperature or temperature programming in liquid chromatography provides several advantages such as fast analysis, increased efficiency, a change of selectivity and an increase of the elution strength of the mobile phase. Method development in high- temperature liquid chromatography is usually governed by trial and error although a systematic approach is preferred. Therefore, it was investigated whether the empirical linear elution strength (LES) retention model can be adapted from temperature-programmed gas chromatography (GC) to temperature-programmed liquid chromatography (LC). It was found that by means of the LES model, retention times of selected steroids and polycyclic aromatic hydrocarbons can be precisely predicted depending on a simple linear temperature gradient in LC. An average relative error of less than 2% of predicted retention times was observed. Moreover, the influences of column chemistry, inner column diameter and composition of an isocratic mobile phase were studied. Because of these findings, the LES model was further extended in order to predict more complex segmented temperature gradients. For these gradients, the retention times of sulfonamides could be predicted precisely with an average relative error of 2.2%. The LES model in GC permits isothermal retention time predictions on the basis of temperature-gradient measurements. This approach was also employed in liquid chromatography and it is shown that this assumption cannot be transferred to temperature-programmed LC. Because of the need to predict isothermal retention times, predictions based on a plot of the natural logarithm of the retention factor were tested for temperature dependency. It was found that a plot of the natural logarithm of the retention factor versus temperature yields reliable isothermal retention time predictions. In order to improve the accuracy of retention time predictions based on temperature gradients even further, a second compound specific model parameter was also calculated temperature dependent. Using this approach, the relative error of retention time predictions of multi-step temperature gradients can be decreased to around 1.5%. Concurrently, a new experimental design was introduced which permits isothermal predictions on the basis of only four temperature-gradient input measurements. Moreover, a set of recommendations to assist the practitioner during method development in HT-HPLC was established. Finally, the linear solvent strength and the linear elution strength retention model were combined in order to predict simultaneous solvent and temperature gradients in LC. An average relative error of 0.6% of predicted retention times was observed. On the basis of the present work, temperature gradients can now be incorporated in systematic method development in liquid chromatography.In der Flüssigchromatographie (LC) bietet die Anwendung höherer Temperaturen oder der Temperaturprogrammierung verschiedene Vorteile. Trennungen können beschleunigt, die Effizienz kann erhöht und die Selektivität sowie die Elutionsstärke der mobilen Phase kann beeinflusst werden. Dennoch wird die Methodenentwicklung in der Hochtemperatur-LC nicht systematisch durchgeführt. Im Rahmen dieser Arbeit ist untersucht worden, ob das empirische linear elution strength (LES) Retentionsmodell aus der temperaturprogrammierten Gaschromatographie (GC) auf die temperaturprogrammierte LC übertragen werden kann. Dazu wurde das LES Modell verwendet, um Retentionszeiten von ausgewählten Steroiden und polyzyklischen aromatischen Kohlenwasserstoffen in Abhängigkeit eines Temperaturgradienten zu simulieren. Die Retentionszeiten der Analyten konnten mit einem mittleren relativen Fehler von weniger als 2% präzise vorhergesagt werden. Gleichzeitig wurden die Einflüsse der Säulenchemie, des Säuleninnendurchmessers und die Zusammensetzung isokratischer mobiler Phasen untersucht. Durch die anschließende Erweiterung des LES Modells konnten auch komplexe mehrstufige Temperaturgradienten präzise simuliert werden. Die Retentionszeiten von Sulfonamiden konnten mit einem mittleren relativen Fehler von 2,2% vorhergesagt werden. In der GC kann das LES Modell auch zur Simulation von isothermen Trennungen auf Basis von Temperaturgradienten verwendet werden. Dieser Ansatz konnte jedoch nicht auf die LC übertragen werden. Da die Simulation von isothermen Retentionszeiten erforderlich ist, wurden verschiedene Auftragungen des Logarithmus des Retentionsfaktors in Abhängigkeit von der Temperatur untersucht. Die Auftragung des Logarithmus des Retentionsfaktors gegen die Temperatur führt zu vertrauenswürdigen Vorhersagen. Um die Genauigkeit der Simulationen weiter zu verbessern, wurde ein zusätzlicher analytabhängiger Modellparameter temperaturabhängig berechnet. Dadurch konnte der relative Fehler der Vorhersage von mehrstufigen Temperaturgradienten um 1,5% gesenkt werden. Gleichzeitig wurde eine neue Kombination von Basismessungen vorgestellt mit der es möglich ist, isotherme Trennungen auf Basis von vier Temperaturgradienten vorherzusagen. Weiterhin wurden Empfehlungen formuliert, um den Anwender während der Methodenentwicklung in der Hochtemperatur-LC zu unterstützen. Abschließend wurden das linear solvent strength und das linear elution strength Retentionsmodell kombiniert, um simultane Lösungsmittel- und Temperaturgradienten zu simulieren. Der mittlere relative Fehler dieser Vorhersagen betrug 0,6%. Auf Grundlage dieser Arbeit ist es nun möglich, Temperaturgradienten als Parameter einer systematischen Methodenentwicklung in der Hochtemperatur-Flüssigchromatographie zu berücksichtigen

    Analysis of selective bonding processes using reactive multi-layers for system integration on LTCC based SiPs

    Get PDF
    This paper discusses the use of reactive multi-layers for selective assembly of ICs (Integrated Circuits) in an LTCC (Low Temperature Co-fired Ceramics) based SiP (System-in-Package). To understand the requirements for the use of self-propagating reactive multilayers in die bonding, CFD (Computational Fluid Dynamics) simulations have been carried out to simulate the die bonding process of a silicon chip onto a ceramic LTCC substrate. Reactive foils of 40 and 80 µm thicknesses and a simulated reaction propagation speed of 1 m/s were studied and used to melt a solder preform underneath a silicon chip. The results of the CFD simulations were analysed, particularly with respect to temperature and liquid fraction contours, as well as time-temperature histories obtained from temperature probes which were included in the model, such as to approximate the real behaviour of Pt-100 temperature probes, when a real bonding process is being tracked. The CFD method, in this instance realised with ANSYS Fluent software, can track the melting and solidification of the solder as well as model the influence of latent heat, which is crucial to ascertaining the true evolution of the bonding process

    The Simulated Effect of Adding Solder Layers on Reactive Multilayer Films Used for Joining Processes

    Get PDF
    In order to introduce new bonding methods in the area of electronic packaging a theoretical analysis was conducted, which should give substantial information about the potential of reactive multilayer systems (rms) to create sufficient local heat for joining processes between silicon chips and ceramic substrates. For this purpose, thermal CFD (computational fluid dynamics) simulations have been carried out to simulate the temperature profile of the bonding zone during and after the reaction of the rms. This thermal analysis considers two different configurations. The first configuration consists of a silicon chip that is bonded to an LTCC-substrate (Low Temperature Co-fired Ceramics) using a bonding layer that contains an rms and a solder preform. The reaction propagation speed of the reactive multilayer was set to a value of 1 m/s, in order to partially melt a solder preform underneath a silicon chip. The second configuration, which consists only of the LTCC substrate and the rms, was chosen to study the differences between the thermal outputs of the two arrangements. The analysis of the CFD simulations was particularly focused on interpretations of the temperature and liquid fraction contours. The CFD thermal simulation analysis conducted contains a melting/solidification model which can track the molten/solid state of the solder in addition to modelling the influence of latent heat. To provide information for the design of a test-substrate for experimental investigations, the real behaviour of Pt-100 temperature probes on the LTCC-substrate was simulated, in order to monitor an actual bonding in the experiment. All simulations were carried out using the ANSYS Fluent software

    The simulated effect of adding solder layers on reactive multilayer films used for joining processes

    Get PDF
    In order to introduce new bonding methods in the area of electronic packaging a theoretical analysis was conducted, which should give substantial information about the potential of reactive multilayer systems (rms) to create sufficient local heat for joining processes between silicon chips and ceramic substrates. For this purpose, thermal CFD (computational fluid dynamics) simulations have been carried out to simulate the temperature profile of the bonding zone during and after the reaction of the rms. This thermal analysis considers two different configurations. The first configuration consists of a silicon chip that is bonded to an LTCC-substrate (Low Temperature Co-fired Ceramics) using a bonding layer that contains an rms and a solder preform. The reaction propagation speed of the reactive multilayer was set to a value of 1 m/s, in order to partially melt a solder preform underneath a silicon chip. The second configuration, which consists only of the LTCC-substrate and the rms, was chosen to study the differences between the thermal outputs of the two arrangements. The analysis of the CFD simulations was particularly focused on interpretations of the temperature and liquid fraction contours. The CFD thermal simulation analysis conducted contains a melting/solidification model which can track the molten/solid state of the solder in addition to modelling the influence of latent heat. To provide information for the design of a test-substrate for experimental investigations, the real behaviour of Pt-100 temperature probes on the LTCC-substrate was simulated, in order to monitor an actual bonding in the experiment. All simulations were carried out using the ANSYS Fluent software
    corecore