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Abstract: In order to introduce new bonding methods in the area of electronic packaging a theoretical
analysis was conducted, which should give substantial information about the potential of reactive
multilayer systems (rms) to create sufficient local heat for joining processes between silicon chips
and ceramic substrates. For this purpose, thermal CFD (computational fluid dynamics) simulations
have been carried out to simulate the temperature profile of the bonding zone during and after
the reaction of the rms. This thermal analysis considers two different configurations. The first
configuration consists of a silicon chip that is bonded to an LTCC-substrate (Low Temperature
Co-fired Ceramics) using a bonding layer that contains an rms and a solder preform. The reaction
propagation speed of the reactive multilayer was set to a value of 1 m/s, in order to partially melt a
solder preform underneath a silicon chip. The second configuration, which consists only of the LTCC-
substrate and the rms, was chosen to study the differences between the thermal outputs of the two
arrangements. The analysis of the CFD simulations was particularly focused on interpretations of the
temperature and liquid fraction contours. The CFD thermal simulation analysis conducted contains
a melting/solidification model which can track the molten/solid state of the solder in addition to
modelling the influence of latent heat. To provide information for the design of a test-substrate for
experimental investigations, the real behaviour of Pt-100 temperature probes on the LTCC-substrate
was simulated, in order to monitor an actual bonding in the experiment. All simulations were carried
out using the ANSYS Fluent software.

Keywords: CFD; thermal simulation analysis; reactive multilayer systems; joining

1. Introduction

Thermal mechanical stresses are one of the most crucial issues in joining processes
in microelectronics. These stresses are usually caused by two factors. Factor one is the
differences in thermal expansion of the materials to be joined. Factor two is the high
process temperatures that are needed for most joining processes. Eliminating one of
the two factors helps to significantly reduce the thermal-mechanical stress after bonding.
One idea to achieve this goal is the usage of localised heat in the joining zone without a
global heating of the entire assembly. There are different approaches for low-temperature
localised bonding techniques. One such method of realising this is to use nanoscale reactive
multilayer technologies to deploy a heat source on a targeted area. Established reactive
multilayer systems consist of an alternating stack of layers of different metals, such as Fe
and Ni, which can create a self-propagating exothermal reaction. One targeted area for the
application of these reactive multilayers in microelectronics are additive bonding processes
in LTCC technology, in order to prevent critical thermal-mechanical stresses in sensitive
structures within the LTCC multilayer.

LTCC provides special 3D-structuring abilities, which enables liquid cooling system
integration [1], special biomedical sensors [2–4] and fluidic structures [2,5]. Such LTCC
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architectures are sensitive to thermo-mechanical stresses. Another strength is its specific
dielectric properties, that make LTCC a very beneficial substrate for specific areas, such as
high frequency or millimetre wave circuits [6–8] or RF-antennas (radio-frequency antennas)
and radars [7,9]. Other applications of LTCC substrates are power LED (light-emitting
diode) packaging [10] and fibre optical applications [11].

In addition to this multifaceted functionality, LTCC packages are capable of offering
a high reliability [8,12], with respect to superior thermal mechanical integrity, a high
level of hermiticity [8,13] and excellent chemical resistance [13–15]. The requirements for
such characteristics make the LTCC technology an excellent candidate for automotive
applications [9,12]. However, due to high costs, LTCC applications are presently best
suited to specific high-performance applications, such as military, space, biomedical and
millimetre wave communication [12].

While the deposition of reactive multilayers on silicon substrates is well-established [16],
it is somewhat more challenging to achieve deposition on LTCC substrates. The main hin-
drance is the intrinsic roughness of the LTCC substrate, the roughness of which ranges from
0.4 to 1 µm [17–19]. The reactive multilayer thin films are constructed from well-defined
energetic materials that are heterogenous in their structure and contain stored chemical en-
ergy [20]. These multilayers have thin layers of reactants which alternate between layers of
different metastable solids, each of which have a thickness in the range of 10–300 nm [21].
These alternating layers are typically combined up to a total thicknesses in the range of
~0.1–300 µm [20]. The layers are chosen based on their ability to make a reaction and to release
heat, and the most straight-forward method for obtaining such a multilayer system is by using
layer-by-layer magnetron-assisted deposition [22], however alternative approaches such as
vacuum deposition and more cost-effective mechanical methods can also be used [23].

Should the reactants by sufficiently perturbed, e.g., through heat, then they begin to
spontaneously intermix on the atomic level, as per Figure 1, where the reaction propagates
from left to right, releasing heat in the process [24], and once the reaction is initiated, the
subsequent heat release is sufficient such that the reaction continues to self-propagate [20].
Alternate methods for initiating the reaction include the means of using an electric spark or
laser pulse [22], whereafter the reaction can also continue to self-propagate.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 18 
 

LTCC provides special 3D-structuring abilities, which enables liquid cooling system 
integration [1], special biomedical sensors [2–4] and fluidic structures [2,5]. Such LTCC 
architectures are sensitive to thermo-mechanical stresses. Another strength is its specific 
dielectric properties, that make LTCC a very beneficial substrate for specific areas, such as 
high frequency or millimetre wave circuits [6–8] or RF-antennas (radio-frequency 
antennas) and radars [7,9]. Other applications of LTCC substrates are power LED (light-
emitting diode) packaging [10] and fibre optical applications [11]. 

 In addition to this multifaceted functionality, LTCC packages are capable of offering 
a high reliability [8,12], with respect to superior thermal mechanical integrity, a high level 
of hermiticity [8,13] and excellent chemical resistance [13–15]. The requirements for such 
characteristics make the LTCC technology an excellent candidate for automotive 
applications [9,12]. However, due to high costs, LTCC applications are presently best 
suited to specific high-performance applications, such as military, space, biomedical and 
millimetre wave communication [12]. 

While the deposition of reactive multilayers on silicon substrates is well-established 
[16], it is somewhat more challenging to achieve deposition on LTCC substrates. The main 
hindrance is the intrinsic roughness of the LTCC substrate, the roughness of which ranges 
from 0.4 to 1 µm [17–19]. The reactive multilayer thin films are constructed from well-
defined energetic materials that are heterogenous in their structure and contain stored 
chemical energy [20]. These multilayers have thin layers of reactants which alternate 
between layers of different metastable solids, each of which have a thickness in the range 
of 10–300 nm [21]. These alternating layers are typically combined up to a total thicknesses 
in the range of ~0.1–300 µm [20]. The layers are chosen based on their ability to make a 
reaction and to release heat, and the most straight-forward method for obtaining such a 
multilayer system is by using layer-by-layer magnetron-assisted deposition [22], however 
alternative approaches such as vacuum deposition and more cost-effective mechanical 
methods can also be used [23]. 

 Should the reactants by sufficiently perturbed, e.g., through heat, then they begin to 
spontaneously intermix on the atomic level, as per Figure 1, where the reaction propagates 
from left to right, releasing heat in the process [24], and once the reaction is initiated, the 
subsequent heat release is sufficient such that the reaction continues to self-propagate [20]. 
Alternate methods for initiating the reaction include the means of using an electric spark 
or laser pulse [22], whereafter the reaction can also continue to self-propagate. 

 
Figure 1. Schematic showing the progression of the reactive multilayer system (RMS). 

A successful deposition of reactive multilayers on LTCC substrates has been reported 
[25]. Here, the LTCC substrates were covered by a brazeable silver system, whereafter an 
additional 5 µm SAC (Tin–Silver–Copper) solder was deposited to further adapt the 
rough LTCC substrate to the reactive nanolayer pile.  

The intention is to deposit the reactive multilayer on a surface that is well-isolated 
electrically. In order to adapt the nanolayer pile to the rough surface of the LTCC 
substrate, a dielectric layer is printed on top, as per Figure 2, with a cross section of the 
reactive multilayer on an LTCC substrate being shown in Figure 3 complete with a 
GreenTapeTM DuPont (DP) 951 isolation layer. Figure 2 shows the formation required for 

Figure 1. Schematic showing the progression of the reactive multilayer system (RMS).

A successful deposition of reactive multilayers on LTCC substrates has been re-
ported [25]. Here, the LTCC substrates were covered by a brazeable silver system, where-
after an additional 5 µm SAC (Tin–Silver–Copper) solder was deposited to further adapt
the rough LTCC substrate to the reactive nanolayer pile.

The intention is to deposit the reactive multilayer on a surface that is well-isolated
electrically. In order to adapt the nanolayer pile to the rough surface of the LTCC substrate,
a dielectric layer is printed on top, as per Figure 2, with a cross section of the reactive
multilayer on an LTCC substrate being shown in Figure 3 complete with a GreenTapeTM

DuPont (DP) 951 isolation layer. Figure 2 shows the formation required for a so-called
tape-on-substrate (TOS) process [26], and furthermore, screen-printed dielectric paste is
added to the fired substrate, which then requires a brief drying step and an additional 2 h
sintering process.
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Figure 4 shows a cross-section performed on one of these LTCC substrates with
similar embedded temperature probe structures using light microscopy. Here, the reactive
multilayer (RMS), the probe and the isolation layer (IL) between the probe and the reactive
layer is clearly visible. One can observe from this cross section that each of these structures
contains significant roughness, which is not captured in the model where each of the edges
are taken to be orthogonal to their respective neighbours and completely straight.

In this work, CFD models are utilised which model and simulate the heat release of
such a reactive foil for the purposes of bonding a chip to an LTCC substrate. The localised
heat release causes the solder to melt, and thereafter, once the reaction has expired, the
structures cool down. The purpose of the simulations is to determine the effect of adding
solder layers upon reactive multilayer films and to offer guidelines as to how these would
potentially be interpreted by temperature instrumentation in a similar laboratory environ-
ment. Comparisons are made between simulations with and without the presence of the
solder above the reactive multilayer systems. The CFD models are based on a macroscopic
approach and do not take things like surface roughness or pre-treatments to smooth out the
layers into account. The simulations are designed towards a generic, hypothetical system
as a proof of concept, with the goal of adapting them to experimental configurations for the
purpose of comparison when they have been successfully manufactured.
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2. Materials and Methods

There have been various methods used to model reactive multilayer foils that have
been studied to enhance the understanding of the limits of their usability and functionality,
but these are mainly concentrated on their operating states [27–29] as opposed to their
respective performance during manufacture. Therefore, simulations targeting reactive
bonding processes in microsystems and microelectronics packaging (such as [30–34]) are
generally at an elementary stage compared to the average simulation methodology in the
field. The approach used here is the CFD method, as similarly simulated in [35], where a
3-D shoebox model was created comprising various layers, namely a chip, solder, reactive
multilayer, substrate and the surrounding air environment.

The extent of the boundaries surrounding the model, where the domain is 20 mm ×
20 mm × 15 mm in size, a volume which was chosen to provide sufficient displacement of
the external boundaries from the main region of interest whilst maintaining a reasonably
sized mesh. The respective thicknesses of the layers were 400 µm for the Si chip, solder
thickness of 200 µm, a total reactive foil thickness of 30 µm and an LTCC thickness of
570 µm.

The mesh was subdivided in a manner such that consistent mesh sizing with edge
length of 10 µm could be prescribed in the y direction, with a mesh edge length of 100 µm in
the x and z directions, as shown in Figure 5. The mesh comprised approximately 5,000,000
cells, representing a mesh significantly larger than that used in similar previous work [35].
The fixed mesh lengths of 100 and 10 µm ensured that the aspect ratio of the cells was
within a reasonable range (10:1, for x and z:y), albeit the aspect ratios were slightly larger
in the isolation layer, for example, where 4 cells span the 35 µm gap.

Three temperature probes, P1–P3, approximating Pt-100 temperature sensors with
silver vias, were integrated into the model inside the LTCC substrate. In Figure 6, the main
dimensions of each probe in the x–z plane and the layer thicknesses are shown.
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Similarly, in Figure 7, the main dimensions in the x–y plane are illustrated for the
model and the 3 temperature probes, P1–P3, are also highlighted.

The sensing volume, i.e., the part for which volume-averaged temperatures were cal-
culated, was 430 µm × 210 µm × 10 µm, corresponding to a sensing volume of 0.0009 mm3.
These probes are displaced from the next probe by 1 mm in the x direction, with the front
edge of P1 displaced by 0.3 mm from the leading edge of the reactive multilayer. The top
surface is 35 µm displaced below the reactive foil, meaning they are separated by the full
thickness of the isolation layer.

Note that there was only one element through the thickness of the Pt probes, which
is not ideal, but increasing the number of cells through the thickness of the probes would
have a highly detrimental effect on the aspect ratio of the cells, and therefore the stability
of the model. These probes were included to help in developing the understanding of the
requirements for manufacturing similar prototypes, and furthermore, to understand the
interference caused by the presence of the probes themselves.
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It is considered to be relatively straight-forward to measure the propagation velocity
of reactive foils, due to the intense luminescence of the wave front. However, temperature
measurements are more complicated owing to the interference caused by the presence of
the thermocouples. The thermocouples are known to typically provide underestimated
values of temperature due to their susceptibility to remove heat and interfere with the
combustion process [22]. These simulations can offer some insight into the removal of heat,
but the heat released will be unaffected by their presence.

The domain comprises both fluid and solid mesh structures, with the respective
thermal properties shown in Table 1. These properties are drawn from the ANSYS Fluent
material databases and the GreenTapeTM DuPont DP 951 material data sheet. The silicon,
reactive foil, ceramic, platinum and silver structures have solid states assigned, whereas the
air and solder have fluid status and utilise fluid models in the ANSYS Fluent solver. The
melting/solidification model is activated in ANSYS Fluent for the solder, in order that the
transitions between the molten and solid behaviour, and the associated latent heat transfer
throughout, are modelled. The pure solvent melting heat for the solder is 58.5 kJ/kg. A
liquidus temperature of 217 ◦C and solidus temperature of 220 ◦C were used for the solder.
These values correspond closely to typical thermal properties of a SAC solder.

The heat released by the reactive multilayer system was modelled in ANSYS Fluent
through a heat source profile in the form of Equation (1). This heat source profile is a
probability density function (PDF) propagating in the positive x direction, starting at the
leading edge of the reactive multilayer. The reaction is assumed to initiate at time = 0 s and
continually propagates as a function of time.

AeB(x+C−Dt)2
(1)

The coefficient A corresponds to the amplitude of the reaction wave, 6 × 1012, B the
width of the PDF, −8 × 106, C is an offset to align with the leading edge, 2 mm in the x
direction, and D is the velocity of the reaction. For the results presented here, a reaction
speed, D, of 1 m/s has been modelled. The reaction speed is known to vary with respect to
several factors, for example the ignition potential [21]. In [20], the general range of these
multilayer reactions was quoted as being between 0.1 and 100 m/s, therefore a reaction
speed of 1 m/s is comfortably within this range. The entire domain was initialised to a
temperature of 300 K, in other words no preheating was used.
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Table 1. Material properties for solid domains.

Silicon LTCC Solder Platinum Silver

ρ

kg/m3 2500 3100 7000 21,460 10,490

Cp
J/kg.K 710 600 230 132.04 234.28

K
W/m.K 100 3.3 63.2 71.538 419.97

In ANSYS Fluent, the pressure-coupled transient solver is used in combination with
the implicitly formulated Volume-of-Fluid (VOF) model complete with 2 Eulerian phases,
namely air and solder. The 2-equation k-Ω SST model is used for turbulence modelling
with the energy equation also solved numerically. The melting/solidification model, which
makes use of the enthalpy–porosity approach [36], was used with a mushy zone parameter
of 100,000. This method does not track the melt front explicitly but rather computes a liquid
fraction, which indicates the fraction of the cell volume that is in the molten state, i.e., a
liquid fraction of 1 corresponds to molten solder, whereas 0 is solder in the solid state.

An inlet boundary condition was specified on the y-max boundary with a velocity of
0.1 m/s, with a corresponding outlet pressure boundary condition at 0 Pa (gauge pressure)
on the opposing y min extremity. The turbulence intensity and viscosity ratios were
specified to be the same, 0.1% and 10, on each boundary. These boundaries enabled the
domain to have incoming and outgoing air, and this was found to be beneficial from a
stability standpoint. Given that this crossflow inlet velocity was low, it was considered that
artificial crossflow cooling effects would be negligible.

The PISO pressure–velocity coupling method was used with 2nd-order upwind
schemes for spatial discretisation. Likewise, for the transient formulation, 2nd-order
schemes were used, only this time they were bounded implicit schemes. Furthermore, in
order to capture the effects of buoyancy caused by temperature gradients in the air, the
Boussinessq approximation was used with a constant thermal expansion coefficient of
0.0034/K.

The time-step size used was 10−6 s for 10,000 time steps. Convergence for each
conservation equation was achieved for every time step, typically within 100 iterations
for the initial time steps, with convergence occurring after just one time step later in the
solution process. The temperatures at various probe locations were written out for every
time step, with the larger solution files containing field data for the entire domain written
out every 100 time steps.

3. Results

The results are presented in two subsections, one for simulations conducted with the
presence of a thick layer of solder and a chip above the deposited multilayer on the LTCC,
corresponding to Section 3.1, and simulations without the presence of the solder and chip
above the reactive multilayer, Section 3.2. These results are first presented individually and
then compared more directly in the Section 4.

3.1. Thermal Simulation Results with Solder and Silicon Included

In Figure 8, the temperature contours, for the case with solder and silicon included
in the model, are shown 1 ms after the initiation of the reactive foil at the leading edge.
The crest of the reaction wave was seen to have propagated approximately 1 mm from the
leading edge from time = 0 s, hence corresponding to the prescribed reaction velocity of
1 m/s.

In Figure 9, the temperature contours are shown after 3 ms. The reaction is continuing
its propagation from left to right, and approximately half of the silicon has a temperature
over 100 ◦C. The heat release is seen to penetrate relatively well in the positive z-direction,
in other words in the direction of the solder from the reactive multilayer, and much less so in
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the negative z direction. This is due to the relative disparities in the thermal conductivities
and the solder acting as a much better heat sink.
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Figure 10 shows the liquid fraction contours in the solder region after 3 ms. Here, one
can see that there is a small bubble of molten solder adjacent to where, with reference back
to Figure 9, the main reaction wave crest is present. Upstream of this bubble of molten
solder, one can observe that the solder resolidifies as the wave passes and the structures
begin to cool down again. Only a small percentage of the solder is melted in this case as
the solder used in this model is very thick.
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Figure 11 shows the temperature contours at 4 ms, corresponding approximately to
the time of reaction exhaustion. By this stage, almost all of the silicon has reached over
100 ◦C, but the LTCC still has a large percentage of its structure holding on to its initial
temperature of 27 ◦C (300 K).

In Figure 12, the temperature contours are shown 10 ms after reaction initiation, which
corresponds to the final time step solved for in the model, time step 10,000. By this point, the
reaction wave has long since passed and the backside of the LTCC is still largely unaffected.
There is by this point a significant amount of heat which is conducted down through the
silver vias, and by this point it is clear that there is some disturbance around the sensing
volumes of the probes caused by the presence of these structures. It seems as though
the vias act somewhat as a heat sink for the probes, but interpreting results through the
thickness of the probes should be exercised with caution here, given that there is only one
element through the probe thickness.

In Figure 13 the time–temperature histories of the three probe locations, P1–P3, are
shown. Three clear peaks are observed in each of the temperature probes, and by measuring
the time offset between these three peaks one would be able to ‘sense’ the propagation of
the reaction at this isolation depth of 35 µm within the LTCC substrate. Based on these
simulations, temperature probes manufactured to this specification should be capable of
measuring a reaction, at least in the 1 m/s range, assuming that the sampling frequency and
frequency response of the temperature measuring equipment was of sufficient specification.
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included in the model.

3.2. Thermal Simulation Results without Solder and Silicon

Simulations were also performed on an almost identical model as those in Section 3.1,
only the solder and silicon were removed and replaced directly with air. No solder was
therefore included in these simulations and therefore the melting/solidification model
parameters were not required to be solved for numerically.

Figure 14 shows the temperature contours for a reactive foil with the exact same heat
release UDF equation as in Section 3.1 after 3 ms. The results are qualitatively very similar
to that of Figure 9 but the temperatures are significantly higher, owing to the absence of the
solder acting as a heat sink for the exothermic heat release. The peak temperatures for this
particular heat-release profile reach a temperature of approximately 800 ◦C.

Figure 15 again shows the temperature contours post exhaustion, for 10 ms after the
initiation of the reaction. Here, again the contours are qualitatively similar to the counter-
part including solder and silicon of Figure 12, but the temperatures are quantitatively much
higher.

Figure 16 shows the time–temperature history of the three temperature probes embed-
ded in the LTCC, P1–P3. The peaks are similar to those in Figure 13, but the first peak is
slightly lower in magnitude than the peaks for the P2 and P3 probes because there is more
thermal inertia and less spreading of the heat without the heat sink of the solder.
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4. Discussion

In order to make some more detailed comparisons between the two cases discussed,
more temperature probes were realised from the models directly above the P2 probes, in
the centre of the reactive multilayer system (rms) and the solder, where it exists.

Figure 17 shows the time–temperature progression at each of these locations with the
solder and silicon included in the model, whereas Figure 18 shows the time–temperature
traces without the solder and silicon. In ANSYS Fluent, vertex-averaged temperatures
were used for Trms and Tsolder and comparing the two figures it is clear that the peak
temperatures were much higher without the solder and silicon.

From Figure 17 it is also fair to assume that the heat released from the reactive multi-
layer propagates far easier in the +z -direction than in the -z direction, in other words, the
solder acts to spread the heat much more effectively than the LTCC does.

It is important to note that in a real-world environment the temperature probes would
not merely be present in a passive mode but rather they would have current passing
through them, resulting in a preheating due to their electrical resistivity, resulting in
localised heating, and potentially, further interfering in the reaction process.

In both cases, p2 is significantly lower than Trms, which is particularly attributable to
the presence of the isolation layer between the probe and the reactive multilayer. Neverthe-
less, probes built to these specifications have been shown to be feasible at this depth.

One thing of particular note in Figure 17 is that during cooldown, kinks in the p2
and Trms curves are witnessed, due to the latent heat of the solder between the liquidus
and solidus temperatures of 220 and 217 ◦C, but this information is not sensed by the P2
temperature probe. This could be significant in a real-world scenario because the reaction
speed may be affected clearly by the presence of the surrounding solder, but also by the
effect of the latent heat.
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5. Conclusions

Thermal CFD simulations have been conducted to simulate the temperature profile
of the bonding zone during and after the reaction of the rms. The goal was to estimate
theoretically the potential of reactive multilayer systems to create sufficient local heat for
joining processes between silicon chips and ceramic substrates. Two different configurations
have been considered. The first configuration consists of a silicon chip that is bonded to an
LTCC-substrate using a bonding layer that contains a rms and a solder preform, while the
second configuration consisted only of the LTCC-substrate and the rms. The simulations
are capable of resolving a reaction wave propagating at 1 m/s.

Significant temperature differences were found between the two cases studied here in
that the temperatures in the reactive multilayer were much higher for the system without
the solder and silicon. The presence of the solder would likely have a significant influence
on the real propagation of the reaction through causing greater suppression of the reaction
wave. The solder dimensions chosen were extremely thick in order to possess high mesh
resolution throughout its thickness and to exaggerate its influence, so the difference between
the two configurations may be somewhat exaggerated here.

The enthalpy–porosity method used by the melting/solidification model in ANSYS
Fluent allows for incorporation of the effects of latent heat when solving the energy equa-
tion, and the encapsulation of this behaviour is something that is not readily available
using alternative simulation approaches for an analysis of the solder behaviour during
bonding. This means that CFD and these models could offer a leading simulation approach
when it comes to assessing the thermal behaviour of reactive foils during bonding. For
example, the heat release could potentially be used to determine the total number of layers
required to form a functioning solder joint between components. This would effectively
offer a crucial insight into manufacturing requirements. Furthermore, a whole new world
of multiphysics simulations could be opened by using the temperature fields as inputs
to achieve reasonable estimations of stresses induced during a bonding process, and to
ultimately determine probable reliability characteristics from these assessments.
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