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Abstract 
The use of elevated temperature or temperature programming in liquid chromatography 

provides several advantages such as fast analysis, increased efficiency, a change of selectivity 

and an increase of the elution strength of the mobile phase. Method development in high- 

temperature liquid chromatography is usually governed by trial and error although a 

systematic approach is preferred. Therefore, it was investigated whether the empirical linear 

elution strength (LES) retention model can be adapted from temperature-programmed gas 

chromatography (GC) to temperature-programmed liquid chromatography (LC). It was found 

that by means of the LES model, retention times of selected steroids and polycyclic aromatic 

hydrocarbons can be precisely predicted depending on a simple linear temperature gradient in 

LC. An average relative error of less than 2% of predicted retention times was observed. 

Moreover, the influences of column chemistry, inner column diameter and composition of an 

isocratic mobile phase were studied. Because of these findings, the LES model was further 

extended in order to predict more complex segmented temperature gradients. For these 

gradients, the retention times of sulfonamides could be predicted precisely with an average 

relative error of 2.2%. The LES model in GC permits isothermal retention time predictions on 

the basis of temperature-gradient measurements. This approach was also employed in liquid 

chromatography and it is shown that this assumption cannot be transferred to temperature-

programmed LC. Because of the need to predict isothermal retention times, predictions based 

on a plot of the natural logarithm of the retention factor were tested for temperature 

dependency. It was found that a plot of the natural logarithm of the retention factor versus 

temperature yields reliable isothermal retention time predictions. In order to improve the 

accuracy of retention time predictions based on temperature gradients even further, a second 

compound specific model parameter was also calculated temperature dependent. Using this 

approach, the relative error of retention time predictions of multi-step temperature gradients 

can be decreased to around 1.5%. Concurrently, a new experimental design was introduced 

which permits isothermal predictions on the basis of only four temperature-gradient input 

measurements. Moreover, a set of recommendations to assist the practitioner during method 

development in HT-HPLC was established. Finally, the linear solvent strength and the linear 

elution strength retention model were combined in order to predict simultaneous solvent and 

temperature gradients in LC. An average relative error of 0.6% of predicted retention times 

was observed. On the basis of the present work, temperature gradients can now be 

incorporated in systematic method development in liquid chromatography.  
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Kurzfassung 
In der Flüssigchromatographie (LC) bietet die Anwendung höherer Temperaturen oder der 

Temperaturprogrammierung verschiedene Vorteile. Trennungen können beschleunigt, die 

Effizienz kann erhöht und die Selektivität sowie die Elutionsstärke der mobilen Phase kann 

beeinflusst werden. Dennoch wird die Methodenentwicklung in der Hochtemperatur-LC nicht 

systematisch durchgeführt. Im Rahmen dieser Arbeit ist untersucht worden, ob das empirische 

linear elution strength (LES) Retentionsmodell aus der temperaturprogrammierten 

Gaschromatographie (GC) auf die temperaturprogrammierte LC übertragen werden kann. 

Dazu wurde das LES Modell verwendet, um Retentionszeiten von ausgewählten Steroiden 

und polyzyklischen aromatischen Kohlenwasserstoffen in Abhängigkeit eines 

Temperaturgradienten zu simulieren. Die Retentionszeiten der Analyten konnten mit einem 

mittleren relativen Fehler von weniger als 2% präzise vorhergesagt werden. Gleichzeitig 

wurden die Einflüsse der Säulenchemie, des Säuleninnendurchmessers und die 

Zusammensetzung isokratischer mobiler Phasen untersucht. Durch die anschließende 

Erweiterung des LES Modells konnten auch komplexe mehrstufige Temperaturgradienten 

präzise simuliert werden. Die Retentionszeiten von Sulfonamiden konnten mit einem 

mittleren relativen Fehler von 2,2% vorhergesagt werden. In der GC kann das LES Modell 

auch zur Simulation von isothermen Trennungen auf Basis von Temperaturgradienten 

verwendet werden. Dieser Ansatz konnte jedoch nicht auf die LC übertragen werden. Da die 

Simulation von isothermen Retentionszeiten erforderlich ist, wurden verschiedene 

Auftragungen des Logarithmus des Retentionsfaktors in Abhängigkeit von der Temperatur 

untersucht. Die Auftragung des Logarithmus des Retentionsfaktors gegen die Temperatur 

führt zu vertrauenswürdigen Vorhersagen. Um die Genauigkeit der Simulationen weiter zu 

verbessern, wurde ein zusätzlicher analytabhängiger Modellparameter temperaturabhängig 

berechnet. Dadurch konnte der relative Fehler der Vorhersage von mehrstufigen 

Temperaturgradienten um 1,5% gesenkt werden. Gleichzeitig wurde eine neue Kombination 

von Basismessungen vorgestellt mit der es möglich ist, isotherme Trennungen auf Basis von 

vier Temperaturgradienten vorherzusagen. Weiterhin wurden Empfehlungen formuliert, um 

den Anwender während der Methodenentwicklung in der Hochtemperatur-LC zu 

unterstützen. Abschließend wurden das linear solvent strength und das linear elution strength 

Retentionsmodell kombiniert, um simultane Lösungsmittel- und Temperaturgradienten zu 

simulieren. Der mittlere relative Fehler dieser Vorhersagen betrug 0,6%. Auf Grundlage 

dieser Arbeit ist es nun möglich, Temperaturgradienten als Parameter einer systematischen 

Methodenentwicklung in der Hochtemperatur-Flüssigchromatographie zu berücksichtigen. 
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Chapter 1. General Introduction 

The use of elevated temperature and temperature programming in high performance liquid 

chromatography (HPLC) provides several advantages [1] and it is well documented that 

increasing the temperature results in a change of the physicochemical properties of water and 

binary solvent mixtures [2-4]. Temperature is usually discussed in terms of speeding up a 

separation [5-7], because elevated temperature yields a lower viscosity of the mobile phase, 

which concurrently results in a lower system backpressure and a higher diffusivity of the 

analytes. Thus, the flow rate can be increased in order to decrease the total analysis time. 

Moreover, an increase of temperature yields also a flattened van Deemter curve. Thus, the 

increased flow rate only slightly affects the column efficiency [8,9]. Furthermore, the reduced 

backpressure enables the use of smaller particles or longer columns [10].  

Temperature, however, is not only a tool to speed up a separation or to increase efficiency; 

temperature also plays an important role in changing selectivity in liquid chromatography, 

especially for polar and ionizable compounds [11,12]. Chen and Horvath compared solvent 

gradient elution and temperature programming for the separation of selected alkylbenzenes 

and proteins [13]. They concluded that temperature programming can only be an insufficient 

alternative to solvent gradient elution. However, they also pointed out that temperature 

programming in combination with solvent gradient elution could be employed as fine tuning 

to enhance the critical resolution of structurally similar macromolecules such as proteins. 

Another impressive example was given by Vanhoenacker et al. [8] who developed a method 

for the separation of 20 pesticides using a combined solvent and temperature gradient. 

Vanhoenacker was able to show that an isothermal baseline separation within a temperature 

interval from 40 °C to 90 °C by means of a solvent gradient was not possible, and a 

combination of simultaneous solvent and temperature programming was required for a 

baseline separation. A similar example was given by Giegold et al. [14] who could also show 

that a baseline separation of eight sulfonamides and trimethoprim was only possible in dual 

gradient mode, where a solvent and temperature gradient were applied simultaneously.  

Another important temperature depending change in the properties of water and binary hydro 

organic solvent mixtures is related to the static permittivity that decreases with increasing 

temperature [4]. In other words, the higher the temperature of the mobile phase, the lower is 

its polarity. Therefore, under certain conditions, temperature gradients can be employed 
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instead of solvent gradients, as has been shown previously [15-19]. The fact that the elution 

strength of the mobile phase can be tuned by temperature during a chromatographic run 

enables new special hyphenation techniques [18-23]. Most of these hyphenation techniques 

require the use of a water mobile phase or a minimized content of organic solvent in the 

mobile phase. Three of these techniques will be described in more detail to demonstrate why 

temperature gradients in LC are required.  

The first high-temperature high performance liquid chromatography (HT-HPLC) hyphenation 

technique which will be discussed in the present work has been presented by de Boer and Irth 

[20] and deals with the online determination of biologically active compounds in complex 

mixtures. This was achieved by the hyphenation of HT-HPLC with a continuous-flow 

enzyme-substrate reaction where the reaction products are detected by electrospray-ionization 

mass spectrometry (ESI-MS). The determination of the biological activity is based on an 

indirect approach because the inhibition of the enzyme activity is measured by compounds 

eluting from the HPLC column. This yields a temporary change in product concentration and 

is recorded as a negative peak by ESI-MS. The main parts of the system are two reaction 

coils. In the first one the eluting components from the HPLC column are mixed with the 

enzyme and the enzyme activity might be inhibited if the analytes are biologically active. 

Afterwards, the substrate is added and a reaction between enzyme and substrate takes place in 

the second reaction coil yielding two products. If an inhibition of the enzyme activity by the 

analytes takes place, a decrease of the measured concentrations of these two products will be 

observed. Because of the online concept there is an inherent limitation which has to be 

overcome. The concentration of the organic solvent in the mobile phase should not exceed a 

certain concentration; otherwise the enzyme activity would be affected. In order to decrease 

the necessary organic content in the mobile phase, high-temperature HPLC was employed to 

elute also non-polar analytes.  

Another interesting technique where temperature plays an important role is the so-called LC 

taste which has been patented by Symrise [21,22]. This technique also employs high-

temperature HPLC for the determination of gustatory active compounds in complex mixtures. 

For better understanding the system setup will be described briefly. The HPLC system 

consists of two pumps to enable solvent gradient programming and a high-temperature 

column oven with eluent cooling unit which is used to cool down the mobile phase after the 

separation. Afterwards, the effluent is directed to a nondestructive detector such as an 

ultraviolet (UV), a diode array (DAD) or a refractive index (RF) detector. After passing one 
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of these detectors a flow splitter is employed in order to split the mobile phase into two 

pathways. The eluate can then be directly tasted by a person and detected with destructive 

detection techniques such as mass spectrometry (MS) or evaporative light-scattering (ELS). 

Usually, flavors are complex mixtures of compounds with different polarity. This means the 

polarity of the mobile phase has to be changed during the chromatographic run to separate 

these analytes. This can be easily performed by solvent gradients with an organic modifier 

such as acetonitrile, methanol or tetrahydrofuran. However, these solvents cannot be 

employed when a direct online tasting is carried out by a human being. Hence, water will be 

the preferred solvent, because it is not toxic and can also be used with the other detection 

techniques described above. Unfortunately, for some non-polar compounds the elution 

strength of water at elevated temperatures is not sufficient to elute these from the column. 

Therefore, solvent gradient elution is inevitable to increase the elution strength of the mobile 

phase. In this case, ethanol is a suitable organic solvent which significantly enhances the 

elution strength in solvent gradient mode. However, ethanol can only be used up to a certain 

concentration of 5% to 30%. Otherwise, it has a negative impact on sensory impression. 

Therefore, a combination of solvent and temperature programming is necessary to achieve the 

desired separation where the ethanol content in the mobile phase will not falsify the sensory 

impressions. 

The last technique which should be mentioned is the hyphenation of HPLC with isotope ratio 

mass spectrometry (IRMS). With this technique, the abundance ratio of stable isotopes of 

elements is determined. For example, the ratio of carbon isotopes 13 to 12 (13C/12C) is 

detected. Carbon isotope analysis by hyphenated HPLC-IRMS can be performed using the 

LC-IsoLink by Thermo [23]. For a better understanding this hyphenation will be described in 

more detail. First, the HPLC-separated compounds are introduced within the mobile phase 

into a heated zone. Here, wet oxidation of the entire organic carbon takes place to yield 

carbon dioxide at approximately 100 °C. The CO2, which is dissolved in the mobile phase, is 

then directed to a separation unit where the carbon dioxide is separated via a membrane from 

the mobile phase. Afterwards, the CO2 is dried in a gas dryer and then directed to the isotope 

ratio mass spectrometer where the abundance ratio of 13C/12C is determined. Because of the 

experimental setup, this hyphenation has some restrictions which have to be considered. The 

most important point is that the mobile phase has to be absolutely free of any carbon or 

carbon containing compounds such as organic buffers, because these compounds are also 

fully converted to carbon dioxide and will falsify the measured isotopic composition of the 
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analytes. Also, in LC-IRMS analytes with different polarity have to be separated. Therefore, 

the polarity of the mobile phase has to be varied in order to elute all analytes from the column. 

In conventional HPLC organic solvent gradients are employed to alter the elution strength of 

the mobile phase during a chromatographic run. However, in the case of LC-IRMS this 

cannot be accomplished. The optimization of the chromatographic separation can only be 

performed by temperature and organic solvent gradients have to be completely replaced by 

temperature gradients. Furthermore, LC-IRMS requires a baseline separation. Because of the 

isotope effects observed in chromatography the measured isotope composition of analytes in 

partially resolved peaks will otherwise be falsified [24]. 

The three hyphenation techniques described above clearly underline that temperature 

programming is absolutely mandatory to achieve a suitable separation. This requirement 

poses a further problem. The practitioner has to develop a separation method where a 

temperature gradient is employed instead of a solvent gradient. Several examples are given in 

literature of method development based on temperature programming in liquid 

chromatography [8,13,14,25-29]. However, it has to be considered that method development 

during these studies was governed by trial and error. This is a general issue during method 

development in liquid chromatography and not restricted to temperature programming. 

Usually, the user changes different chromatographic parameters such as solvent gradient, pH 

or temperature according to his or her experience with the aim to increase the 

chromatographic resolution while simultaneously decreasing the analysis time. This approach 

needs a lot of time and financial resources. To overcome these deficits, a structured method 

development is mandatory. Several modeling software packages, such as ChromSwordAuto 

[30], DryLab [31], Osiris [32] or ACD/LC & GC Simulator [33] are commercially available 

to reduce the necessary experiments and to assist the user. On the basis of the employed 

retention models of these software packages, it is possible to predict the retention of the 

analytes with high accuracy. Solvent gradient steepness (% B) and pH of the mobile phase or 

solvent gradient steepness (% B) and temperature (T ) are often optimized simultaneously 

[34,35]. The software packages mentioned before do not permit retention time predictions 

depending on a temperature gradient in LC. This problem was first considered by Nikitas and 

Pappa-Louisi. They developed prediction models which permit simulation of retention times 

when solvent composition and temperature are changed simultaneously [36,37]. Up to now, 

their models were tested using only linear temperature gradients within a relatively small 

temperature interval from 15 °C to 75 °C where moderate gradient slopes from 2 °C min-1 up 



Chapter 1 14 
  

to 10 °C min-1 were applied. Furthermore, no software package is commercially available 

which has implemented these retention models. Recently, Cela and co-workers have described 

computer-assisted method development in high-temperature liquid chromatography based on 

an evolutionary algorithm [38]. The developed approach also permits dual mode simulations 

of retention times when solvent composition and temperature are changed simultaneously. In 

their study a temperature interval from 40 °C to 180 °C was investigated using temperature 

gradient slopes up to 20 °C min-1. Moreover, they noted that their software package PREGA 

has incorporated this methodology and can be downloaded for free [38]. However, based on 

the data given by Cela and co-workers a relative error up to 10% was calculated for 

simultaneous solvent and temperature-gradient predictions. 

Working at elevated temperature in liquid chromatography requires that the mobile phase is 

adequately preheated before it enters the column inlet. Otherwise, peaks will be severely 

distorted or even split [39]. To overcome this problem, some manufacturers have 

commercialized specially designed high-temperature column ovens such as the SIM HT-

HPLC 200 column oven [40] or the Polaratherm oven [41]. Both heating systems are depicted 

in Figure 1-1.  

 

Figure 1-1: Left hand side: SIM HT-HPLC 200 column oven by SIM (SIM-Scientific 
Instruments Manufacturer, Oberhausen, Germany); picture copyright SIM. Right hand side: 
Polaratherm 9000 by Selerity Technologies, Inc., (Salt Lake City, USA); picture copyright 
Selerity Technologies. 1: eluent preheating unit, 2: column heating unit, 3: eluent cooling unit. 

On the left hand side the SIM HT-HPLC 200 column oven (Figure 1-1) is displayed. Here, the 

heat transfer is obtained by block heating which means that the capillaries and the column are 

tightly enclosed by aluminum blocks. This modular system consists of the eluent preheating 
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unit (1), the column heating unit (2), and the eluent cooling unit (3). In contrast, on the right 

hand side of Figure 1-1 the Polaratherm high-temperature column oven is shown. Here, the 

heat transfer is achieved by forced-air convection (air-bath), the same concept employed in 

temperature-programmed GC. This system consists also of a preheating unit (1), a convection 

oven where the column is placed (2), and an eluent cooling unit (3).  

The main difference between both column ovens is the approach to heat the mobile and 

stationary phase which provides some advantages as well as drawbacks. The advantages of 

column ovens based on the forced-air convection concept is that these heating systems are 

rather simple, cheap, and the column can be installed very easy [1]. However, the main 

drawback of these thermostats is the poor heat transfer between the heated air and the metal 

surface of the column. The result will be thermal lags between the programmed and the actual 

temperature in the oven as well as between the actual temperature inside the oven and the 

effective temperature in the middle of the column packing [36]. These thermal lag phenomena 

will also be observed when the oven and the column are cooled down after a temperature 

gradient which results in long re-equilibration times [1]. In contrast, if a column oven based 

on block heating is employed, thermal lag phenomena are less pronounced when compared to 

air-bath heating systems. Here, the column and the capillaries are tightly enclosed by 

aluminum blocks. Hence, the heat transfer between the column and the heating unit is most 

efficient [1]. In other words, the heat at the outer side of the column is transferred quickly to 

the middle of the column packing so that the programmed temperature gradient closely 

matches the gradient that the analyte experiences in the column. However, due to the wide 

range of column dimensions and designs of the manufacturers, the column shells have to be 

tailor made for a different column manufacturer which is a drawback of column ovens based 

on block heating [1]. Moreover, the change of the column is more difficult when compared to 

forced-air convection column ovens. 

Another prerequisite of the use of elevated temperature in LC is a temperature stable column. 

Conventional silica-based C18 HPLC columns are not stable at high temperatures which 

results in an immediate decrease of column performance [42,43]. To overcome the limitations 

of silica-based stationary phases, metal oxide based columns have been developed. Packing 

material based on zirconium and titan oxide exhibit a high mechanical, temperature, and pH 

stability. Furthermore, these oxides can be coated with polymers such as polybutadiene (PBD) 

and then employed for reversed phase separations [42,43]. Therefore, columns of this type 

were used for separations at temperatures as high as 200 °C [44-46]. However, with the 
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introduction of HPLC systems with an enlarged pressure range, column packings which are 

stable at pressures up to 1,000 bars were required. Therefore, some column manufacturers 

have introduced silica-based hybrid packings which are stable at high inlet pressures. Because 

of the chemical modification to obtain high pressure stability, the temperature and the pH 

stability was also significantly increased. Up to now, several silica-based columns are 

commercially available which can be used at high temperatures [47-53]. In other words, there 

is no reason why high-temperature liquid chromatography should not be implemented in 

routine laboratory practice, because all required hardware parts such as a high-temperature 

column oven or temperature stable columns are commercially available. 

 

Scope of the Study 

This study is focused on the development of an approach which permits temperature-

programming method development in high-temperature liquid chromatography.  

In Chapter 2, it is investigated whether the linear elution strength (LES) retention model can 

be adapted from temperature-programmed gas chromatography to temperature-programmed 

liquid chromatography. The application of the LES model in high-temperature liquid 

chromatography has been discussed in terms of the influence of the column chemistry, the 

column inner diameter, the composition of the mobile phase, and the temperature gradient-

steepness using two mixtures consisting of steroids and polycyclic aromatic hydrocarbons 

(PAHs). 

Chapter 3 addresses the extension of the adapted linear elution strength (LES) model in order 

to predict more complex segmented temperature gradients in LC. Here, selected sulfonamides 

are used as model analytes. Furthermore, the ability to predict isothermal separations based on 

temperature-gradient input runs as well as on isothermal measurements is investigated. Both 

approaches are discussed in terms of the accuracy of predicted retention times and practical 

considerations. Moreover, the systematic method development for the separation of five 

sulfonamides by temperature-programmed LC is performed based on the current stage of 

development of the LES retention model. 

Chapter 4 describes how the accuracy of retention time predictions based on the linear elution 

strength retention model can be further increased if another solute constant is calculated 

temperature dependent. Furthermore, an approach is discussed which permits predictions of 
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isothermal retention times based on temperature-gradient measurements. Moreover, the 

accuracy of retention time predictions and the practical application of the new experimental 

design are investigated by method development for analysis of selected food additives. 

Finally, a set of recommendations to assist the practitioner during systematic method 

development in HT-HPLC is established. 

Retention time predictions based on temperature gradients in liquid chromatography 

described in Chapters 2 to 4 are performed under isocratic condition. Chapter 5 deals with the 

combination of the linear solvent strength (LSS) and the linear elution strength (LES) model 

in order to predict simultaneous solvent and temperature gradients in liquid chromatography. 

In addition, the described approach for these predictions is discussed in terms of the accuracy 

of dual mode retention time predictions, practical application, and compared with retention 

models found in literature. 

In Chapter 6, the findings of this work are summarized and an outlook on further 

investigations is given. 
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2.1  Introduction 

It is well documented that increasing the temperature will result in a change of the 

physicochemical properties of water and binary solvent mixtures [1-3]. Temperature is 

usually discussed in terms of speeding up a separation, because elevated temperature yields a 

lower viscosity of the mobile phase which concurrently results in a higher diffusivity of the 

analytes. Hence, the flow rate can and should be increased in order to operate the column in 

its respective van Deemter minimum [4-6]. Another change in the properties of water and 

binary hydro organic solvent mixtures is related to the static permittivity that decreases with 

increasing temperature [3]. In other words, the higher the temperature of the mobile phase, the 

lower is its polarity. Therefore, under certain conditions, temperature gradients can be 

employed instead of solvent gradients as has been shown previously [7-11]. 

The fact that the elution strength of a water mobile phase can be tuned by temperature during 

a chromatographic run enables new special hyphenation techniques. Most of these require the 

use of a water mobile phase or a minimized content of organic solvent in the mobile phase 

[12-16]. In these papers, method development is based on temperature programming because 

water is the preferred solvent. In order to obtain a good separation, method development is 

carried out by trial and error approaches. The user changes different chromatographic 

parameters such as solvent gradient, pH, or temperature according to his or her experience 

with the aim to increase the chromatographic resolution while simultaneously decreasing the 

analysis time. This approach needs a lot of time and financial resources. To overcome these 

deficits, a structured method development is mandatory. Several modeling software packages, 

e.g., DryLab [17], ChromSwordAuto [18], Osiris [19] or ACD/LC & GC Simulator [20], are 

commercially available to reduce the necessary experiments and to assist the user. On the 

basis of the employed retention models of these software packages, it is possible to predict the 

retention of the analytes with high accuracy. Solvent gradient steepness (% B) and pH of the 

mobile phase or solvent gradient steepness (% B) and temperature (T ) are often optimized 

simultaneously [21,22]. To the best of our knowledge, however, there is no commercially 

available software package that predicts the retention of the analytes depending on a 

temperature gradient in LC. In order to facilitate the use and broaden the acceptance of these 

special hyphenation techniques, which are already implemented in industry, a systematic 

approach for temperature programming in liquid chromatography to assist the practitioner is 

necessary [14,23]. Previously, Nikitas and Pappa-Louisi [24,25] developed retention models 

which permitted retention time predictions for simultaneous solvent and temperature 
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gradients. However, their models were only tested using temperature gradients with moderate 

slopes from 2 °C min-1 up to 10 °C min-1 in a small temperature range from 15 °C up to 

75 °C. Therefore, the aim of the present work was to investigate whether the linear elution 

strength (LES) approximation from temperature-programmed GC can also be employed in 

temperature-programmed liquid chromatography to allow for the prediction of retention times 

over a broad temperature range from 50 °C up to 180 °C for high-temperature LC and using 

steeper temperature gradients than reported so far. In addition, the validity of the model 

should be evaluated under different chromatographic conditions. The influences of the 

column chemistry, the column inner diameter, the composition of the mobile phase, and the 

gradient steepness were studied using test mixtures consisting of steroids and polycyclic 

aromatic hydrocarbons (PAHs). 

 

2.2 Theoretical Basis 

In this work, the linear elution strength (LES) retention model [26-29] was employed, which 

is similar to the widely used linear solvent strength model (LSS) [30,31] in solvent gradient 

liquid chromatography. The LES model was introduced in 1990 by Snyder and co-workers 

and is used for prediction of retention times of analytes in temperature-programmed gas 

chromatography (GC). Moreover, the LES model was implemented in the commercially 

available software DryLab 2000 plus for structured method development in GC. The 

prediction of solute retention depending on experimental temperature gradients can be 

described as follows [26]: 
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where Rt  is the retention time of the solute, 0t  is the column dead time and 0k  is the retention 

factor of the solute corresponding to the start temperature of the temperature gradient. The 

temperature programming-steepness parameter Tb  consists of the solute constant TS , the 

temperature range T∆  ( final startT T T∆ = − ) and the temperature-gradient time GT . Analogous to 

the LSS model, only two initial gradient runs have to be made. There are some 

recommendations to perform these measurements [26]. First, the gradient slopes of the input 

runs should differ by a factor of three, keeping all other experimental conditions constant. 



Chapter 2 23 
  

Second, for reliable predictions, the analytes should elute in the temperature-gradient window 

[32]. In other words, if an input run is performed from 40 °C up to 160 °C in 20 min, the 

analytes should elute within 20 min. On the basis of these two initial runs, values of Tb  or 

rather TS  and 0k  for each analyte are derived by a numerical solution of equations  

2-1 and 2-2 using the Microsoft Excel solver. This approach is very similar to numerical 

solutions of the LSS relationship [33-35]. 

It is generally recognized that working at elevated temperatures in LC requires that the mobile 

phase is adequately preheated before it enters the column. Otherwise, peaks will be severely 

distorted or even split [36]. Another problem can arise if the column is operated at extremely 

high pressures of about 1000 bar. In this case, frictional heating can occur which also might 

yield band broadening, depending on the type of column oven [37-39]. In the case of 

temperature programming in liquid chromatography, another important aspect concerning the 

column oven has to be considered. In liquid chromatography, usually air-bath column ovens 

based on a similar concept as GC column ovens are used. In this case, the column is placed in 

the oven and the temperature of the ambient air is controlled. If temperature gradients are 

applied, radial temperature gradients will occur, which are called hysteresis phenomena [24] 

or thermal lag. At the start of the temperature gradient, the column wall is heated up by the 

surrounding medium which can be air, a water bath or a heated metal block. After a certain 

time is elapsed, the heat is transferred from the column wall to the stationary phase within the 

column. An efficient heat transfer can be obtained for a heated metal block which tightly 

encloses the column. In contrast, a much slower heat transfer is observed if air is used as the 

heating medium. The result of the thermal lag is schematically shown in Figure 2-1 by a 

comparison of the programmed and the effective temperature gradient in the center of the 

packing.  
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Figure 2-1: Schematic illustration of a temperature-dependent delay time (tDT); TG: 
temperature-gradient time; ID: inner column diameter; OD: outer column diameter. 
 

The best way to determine the thermal lag between the programmed and effective temperature 

gradient inside the column would be to measure the effective temperature in the center of the 

column packing. From a practical point of view, however, this is very difficult to achieve in a 

high pressure system with temperatures up to 200 °C. Because of this practical limitation, this 

paper is focused on the simulation of temperature gradients according to the LES model and a 

comparison between predicted and experimental retention times under temperature-gradient 

conditions. Moreover, it will be investigated how the temperature-dependent delay between 

the programmed and the effective temperature gradient can be taken into account using the 

LES relationship.  
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2.3 Experimental Section 

2.3.1 Chemicals 

High-purity deionized water was prepared by an Elix 10-Milli-Q Plus water purification 

system (Millipore, Eschborn, Germany). Acetonitrile (Optigrade) as well as methanol 

(Optigrade) were purchased from LGC Standards (Wesel, Germany). In this work, two 

different analyte mixtures were used. The first one was a mixture of four steroids which 

included 19-nortestosterone, testosterone, trans-dehydroandrosterone, and epitestosterone. 

The second one was a mixture of six polycyclic aromatic hydrocarbons which consisted of 

naphthalene, acenaphthylene, fluorene, anthracene, pyrene, and chrysene. All chemicals 

employed in this study except for the solvents were purchased from Sigma-Aldrich (Seelze, 

Germany) and of p. a. grade. 

2.3.2 HPLC System 

Two different HPLC systems (Beckman Gold and Shimadzu LC 10) were used to collect the 

chromatographic data. The Beckman System Gold HPLC (Beckman, Krefeld, Germany) 

consisted of a System Gold 126 pump, an AS 502e autosampler, and a System Gold 168 

diode array detector. Additionally, a PL-ELS 1000 evaporative light-scattering detector 

(ELSD) from Polymer Laboratories (Polymer Laboratories Ltd., Darmstadt, Germany) was 

used and connected to the HPLC system via an SS420x AD Box (Scientific Instruments, Inc., 

West Palm Beach, USA). The Shimadzu LC 10 (Shimadzu, Duisburg, Germany) consisted of 

two LC-10ADVP pumps, a DGU-14 A degasser, an SIL-10ADVP autosampler, an SPD-

M10AVP diode array detector, and an SCL-10AVP controller. A 500 psi back pressure 

regulator (GammaAnalysenTechnik, Bremerhaven, Germany) was connected behind the UV 

detector to keep the mobile phase in the liquid state. For data acquisition and analysis, 

Shimadzu LC solution (version 1.21 SP 1) and Beckman 32 Karat (version 7.0 Build 1048) 

were used. 

2.3.3 Heating System 

To heat the mobile and stationary phase, a commercially available SIM HT-HPLC 200 high-

temperature column oven was used (SIM, Scientific Instruments Manufacturer, Oberhausen, 

Germany) [40,41]. The heating system was specially designed for high-temperature liquid 

chromatography and consists of three modules, the eluent preheating unit, the column heating 
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unit, and the eluent cooling unit. The heat transfer is achieved by block heating which means 

that the capillaries and the column are tightly enclosed by aluminum blocks. The three heating 

units can be controlled independently, which guarantees that the temperature of the mobile 

phase entering the column and the temperature of the stationary phase can be exactly 

matched. In order to compensate effects which are related to frictional heating, the 

practitioner can define a temperature difference between the eluent preheating and the column 

heating unit. If a temperature gradient is applied, the temperature of the preheating unit and 

the temperature of the column are increased simultaneously. For all measurements performed 

in this study, the temperature of the preheating unit and the column were identical. 

2.3.4 Temperature-Gradient Measurements 

Steroid Mixture 

For the steroid mixture, a temperature range from 60 °C up to 160 °C was investigated. In this 

range, four temperature gradients with slopes of 1.5 °C min-1, 3.0 °C min-1, 4.0 °C min-1, and 

6.0 °C min-1 were set using a water mobile phase and two ZirChrom-PDB columns 

(150 × 3.0 mm, 5 µm and 100 × 1.0 mm, 3 µm). The flow rate was set to 0.1 mL min-1 and 

1.0 mL min-1 for the 1 mm ID and 3 mm ID column, respectively, and a volume of 20 µL was 

injected. UV detection was performed at 200 nm and 254 nm. In addition, the ELS detector 

was used because of the poor UV absorption of selected steroids. 

PAH Mixture 

For the PAH mixture, the temperature range was set from 50 °C up to 180 °C. Within this 

temperature range, gradients with slopes of 5 °C min-1 up to 30 °C min-1 with an interval of 

2.5 °C min-1 were applied for each column. Here, a Waters Acquity Phenyl (100 × 2.1 mm, 

1.7 µm) and a Waters XBridge C18 (75 × 4.6 mm, 2.5 µm) column were chosen as stationary 

phases. In this case, different mobile phases containing an organic modifier were used. For the 

measurements on the Waters Acquity Phenyl column, a mobile phase consisting of 50/50 

(v/v) water/acetonitrile was employed at a flow rate of 0.3 mL min-1. A mixture of 30/70 (v/v) 

water/methanol was used for the measurements with the Waters XBridge C18 column at a 

flow rate of 1.0 mL min-1. UV detection of selected PAHs was carried out at a wavelength of 

254 nm, and the injection volume was set to 1 µL for the 2.1 mm ID column and 3 µL for the 

4.6 mm ID column. 
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2.4 Results and Discussion 

The prediction of temperature gradients using the LES model does not include a temperature-

dependent delay time. If a delay time exists, the LES model would not be able to match the 

experimental retention times. This also means the differences between predicted and 

experimental data would be higher, the higher the inner diameter of the employed HPLC 

column is.  

In order to test this hypothesis, different temperature-gradient runs were performed and two of 

these runs were employed to calculate the values of TS  and 0k  for each analyte in the 

mixtures. On the basis of these two initial runs, retention times of the analytes were predicted 

for the other runs, which were not included in the data fitting process. Finally, predicted and 

experimental retention times were compared, depending on the inner diameter of the columns. 

Using this approach, the temperature-stability of the HPLC columns is a prerequisite. 

Otherwise, the application of high temperatures leads to a degradation of the packing material 

which concurrently results in a shift of retention times. Therefore, the high-temperature and 

pH stable silica-based Waters Bridged Ethylene Hybrid (BEH) and the metal oxide-based 

ZirChrom columns were employed for our study [42].  

At first, temperature-gradient prediction based on interpolation will be discussed. Figure 2-2 a 

and b show a comparison of predicted vs experimental retention times of each steroid within a 

temperature range from 60 °C up to 160 °C. Predictions are based on experimental 

temperature gradients of 1.5 °C min-1 and 6.0 °C min-1. The solid curves in Figure 2-2 a and b 

are the lines for y x= . Data points shown are obtained using temperature gradients with 

slopes of 2.5, 3.0, and 4.0 °C min-1, which were not included in the data fitting process.  

Figure 2-2 a and b demonstrates that there are only minor differences between predicted and 

experimental retention times. This is true for both the 1 mm ID (Figure 2-2 a) and the 

3 mm ID (Figure 2-2 b) column. The relative error ranges between 0.6% and 1% for the 

1 mm ID column and between 0.6% and 1.6% for the 3 mm ID column. Moreover, the 

average relative error for predicted retention times using the 1 mm and 3 mm inner diameter 

column is 0.5%. In addition, if the root-mean-square error (RMSE) is considered, the 

retention times of the steroids can be predicted with an RMSE of 0.09 min using the 1 mm ID 

column and 0.11 min using the 3 mm ID column. These results point out that the difference 

between prediction and experimental data are independent from the diameter of the HPLC 

column. 
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Figure 2-2: Predicted retention times calculated by LES vs experimental retention times of 
steroids. Predictions based on experimental runs of 1.5 °C min-1 and 6.0 °C min-1. 
Temperature range: 60 °C - 160 °C; (a): ZirChrom-PBD (100 × 1.0 mm; 3 µm); root-mean-
square error: 0.09 min; (b): ZirChrom-PBD (150 × 3.0 mm; 5 µm); root-mean-square error: 
0.11 min; Elution order for every temperature gradient: 19-nortestosterone, testosterone, 
trans-dehydroandrosterone, and epitestosterone. 
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The steroid measurements shown above were carried out on two metal oxide-based stationary 

phases. Moreover, only temperature gradients with a maximal slope of 6.0 °C min-1 were 

investigated using a water mobile phase. In a further step, the LES approximation was 

evaluated using two silica-based Waters BEH stationary phases with diameters of 2.1 and 

4.6 mm. The diameters of these columns were chosen to complete the range of column 

diameters which are usually employed in analytical HPLC. Furthermore, mobile phases which 

consisted of water and an organic modifier were investigated under isocratic conditions. In 

this case, the temperature range was set from 50 °C up to 180 °C. Within this range, 

significantly higher temperature-gradient slopes from 5 °C min-1 up to 30 °C min-1 were 

applied. In addition, in order to evaluate the LES model depending on the class of substances, 

for these experiments, a mixture of six PAHs was employed. 

Figure 2-3 a and b show a comparison of predicted and experimental retention times of each 

PAH within the investigated temperature range. In Figure 2-3 a, a column with an inner 

diameter of 2.1 mm was employed and acetonitrile was used as organic modifier in the mobile 

phase. In contrast, in Figure 2-3 b, a column with an inner diameter of 4.6 mm was used and 

methanol was employed as organic co-solvent. Similar to Figure 2-2, the solid curves in 

Figure 2-3 a and b are the lines for y x= . In this case, the data fitting process was based on 

experimental gradients of 10 °C min-1 and 30 °C min-1. The data points shown are obtained 

using temperature gradients with slopes of 12.5 °C min-1 up to 27.5 °C min-1 with an interval 

of 2.5 °C min-1, which were not included in the data fitting process. Figure 2-3 a and b point 

out that there are only very small differences between predicted and experimental retention 

times of the PAHs. Furthermore, these differences are independent from the diameter of the 

employed column, which becomes also clear by the relative error. The maximal relative error 

ranges between 0.2% and 1.0% for the 2.1 mm ID column and between 0.6% and 1.1% for 

the 4.6 mm ID column. Moreover, an average error of 0.7% was calculated for the 2.1 mm ID 

column, whereas the average error for the 4.6 mm ID column is 0.4%. Also the RMSE of 

0.03 min for the 2.1 mm ID and 0.02 min for the 4.6 mm ID column indicates the precision of 

retention time prediction using the LES model.  
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Figure 2-3: Predicted retention times calculated by LES vs experimental retention times of 
PAHs. Predictions based on experimental runs of 10 °C min-1 and 30 °C min-1. 
Chromatographic conditions: temperature range: 50 °C - 180 °C; (a): Waters Acquity Phenyl 
(100 × 2.1 mm; 1.7 µm); root-mean-square error: 0.03 min; (b): Waters XBridge BEH C18 
(75 × 4.6 mm; 2.5 µm); root-mean-square error: 0.02 min. Elution order for every temperature 
gradient: naphthalene, acenaphthylene, fluorene, anthracene, pyrene, and chrysene. 
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Figure 2-4 shows a comparison of a predicted (Figure 2-4 a) and the corresponding 

experimental chromatogram (Figure 2-4 b). In this case, a temperature gradient with a slope 

of 25 °C min-1 was applied on a Waters BEH column with an inner diameter of 4.6 mm. The 

peak width of the predicted chromatogram was calculated based on equations 10 and 14 of 

reference [26]. It can be seen that there are only marginal differences between the predicted 

and the experimental chromatogram. Furthermore, peaks were eluting symmetrically, and 

excessive peak band broadening due to radial temperature gradients could not be observed. 

The tailing factor at 10% peak height was between 0.9 and 1.2 which indicates a symmetric 

peak shape. 
 

 

Figure 2-4: (a) Predicted chromatogram of PAHs, (b) experimental chromatogram of PAHs. 
Chromatographic conditions: temperature gradient: 50 °C - 180 °C in 5.2 min (25 °C min-1); 
stationary phase: Waters XBridge C18 (75 × 4.6 mm; 2.5 µm). Analytes: 1: naphthalene;  
2: acenaphthylene; 3: fluorene; 4: anthracene, 5: pyrene; 6: chrysene. For chromatographic 
conditions, see experimental section 2.3.4, PAH Mixture. 
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The predicted retention times of selected steroids and PAHs which are shown in Figure 2-2 

and Figure 2-3 are based on interpolation. Next, it was investigated whether the LES 

approximation can also be employed to predict retention times on the basis of extrapolation of 

the input temperature-gradient runs. For the steroid mixture, the prediction starts with two 

experimental temperature-gradient runs with slopes of 1.5 °C min-1 and 3.0 °C min-1. On the 

basis of these gradients the necessary model parameters were calculated and temperature-

gradient runs of 4.0 °C min-1 and 6.0 °C min-1 were predicted. The results for both columns 

are shown in Table 2-1. It can be seen that there is a close agreement between predicted and 

experimental retention times for the 1 and 3 mm ID column with a maximal relative error of 

1.5% and 1.8%, respectively. The relative errors shown in Table 2-1 have a negative sign, 

which points out that the extrapolated retention times of the steroids are usually smaller than 

the experimental values. This trend was not observed in the case of interpolated predictions. 
 

Table 2-1: Comparison between Extrapolated Retention Times of Steroids calculated by LES 
vs Experimental Retention Timesa.  

prediction 
 

[°C min-1] 

ID 
 

[mm] 

analyte exp. RT 
 

[min] 

pred. RT 
 

[min] 

error 
  

[min] 

relative  
error 
[%] 

4.0 1.0 

19-nortestosterone 12.67 12.55 -0.12 -0.9 
testosterone 16.17 15.98 -0.19 -1.2 
trans-dehydroandrosterone 17.73 17.46 -0.27 -1.5 
epitestosterone 17.99 17.76 -0.24 -1.3 

6.0 1.0 

19-nortestosterone 11.02 11.03 +0.02 +0.1 
testosterone 13.52 13.45 -0.07 -0.5 
trans-dehydroandrosterone 14.62 14.46 -0.16 -1.1 
epitestosterone 14.82 14.69 -0.13 -0.9 

4.0 3.0 

19-nortestosterone 14.52 14.26 -0.26 -1.8 
testosterone 17.65 17.50 -0.15 -0.9 
trans-dehydroandrosterone 19.25 19.16 -0.10 -0.5 
epitestosterone 19.47 19.23 -0.24 -1.2 

6.0 3.0 

19-nortestosterone 11.80 11.77 -0.03 -0.3 
testosterone 14.03 14.01 -0.03 -0.2 
trans-dehydroandrosterone 15.20 15.10 -0.10 -0.1 
epitestosterone 15.28 15.15 -0.13 -0.1 

a Prediction based on experimental temperature gradients of 1.5 °C min-1 and 3.0 °C min-1. 

 Temperature range: 60 °C - 160 °C. 
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Analogous to the steroid measurements, the possibility of extrapolations using the PAH 

mixture and the two silica-based Waters BEH columns was investigated. Therefore, 

experimental temperature gradients of 5 °C min-1 and 15 °C min-1 were employed to predict 

gradients with slopes of 17.5, 20.0, 22.5, 25.0, 27.5, and 30.0 °C min-1. These results are 

shown in Figure 2-5 a and b for the 2.1 and 4.6 mm ID column, respectively. For the 

extrapolated retention times of the PAHs a relative error of 0.8% and 1.2% for the 2.1 mm 

and 4.6 mm ID column was observed, respectively. Because of these small errors it can be 

concluded that the LES approximation can also be employed in the case of extrapolation of 

the input runs.  

Moreover, it can also be seen from Figure 2-5 a and b that the retention times of PAHs which 

were extrapolated by LES are slightly shifted to smaller retention times as the corresponding 

experimental values. However, this trend was also observed for the extrapolated retention 

times of the steroids. It is not unexpected that predictions based on extrapolations yield bigger 

errors when compared to predictions based on interpolation. It has to be considered that in 

both cases (steroids and PAHs) the slope of the extrapolated temperature gradients were 

doubled when compared with the input temperature-gradient runs. 
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Figure 2-5: Predicted retention times calculated by LES vs experimental retention times of 
PAHs. Predictions based on experimental runs of 5 °C min-1 and 15 °C min-1. Temperature 
range: 50 °C - 180 °C; (a): Waters Acquity Phenyl (100 × 2.1 mm; 1.7 µm); root-mean-square 
error: 0.04 min; (b): Waters XBridge BEH C18 (75 × 4.6 mm; 2.5 µm); root-mean-square 
error: 0.06 min. Elution order for every temperature gradient: naphthalene, acenaphthylene, 
fluorene, anthracene, pyrene, and chrysene. 
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Nevertheless, the observed trend in extrapolated retention times of steroids and PAHs could 

be interpreted as an argument that the heat transfer in the column does not take place 

immediately. If there would be a significant temperature-dependent delay, this time would be 

taken into account by the data fitting process. Hence, predictions based on interpolation 

should result in good correlation between prediction and experiment. In contrast, 

extrapolations to higher heating rates than those which were employed for the data fitting 

process should result in smaller retention times as the experimental retention times. In this 

case, the influence of the temperature-dependent delay time would be much higher. In this 

context, it is useful to compare our results with LES predictions in temperature-programmed 

GC. Bautz et al. [26] also performed retention time predictions based on extrapolations of two 

initial heating rates. The extrapolations were performed using a 30 m long GC column with an 

internal diameter of 250 µm. It was also observed that the extrapolated retention times 

predicted by the LES model were all lower than the experimental retention times (relative 

error: -1.2%). This trend could not be observed for interpolated values. If we take into account 

that in temperature-programmed GC the heat transfer occurs immediately because of the very 

small inner diameter of the GC columns (250 µm) it can be concluded that the errors observed 

are related to the extrapolation. This means that the errors in extrapolated retention times 

calculated by LES in HPLC are also related to the limitation of the extrapolation and not to a 

thermal lag as shown in Figure 2-1. Moreover, effects due to frictional heating can be 

excluded because the inlet pressure during all measurements in this study was less than 

400 bar. Furthermore, a contribution of the effect of frictional heating regarding the accuracy 

of predicted retention times would be accounted for by the data fitting process. 

Certainly, under temperature-gradient conditions in HPLC, radial temperature gradients will 

take place in the column. Our results show, however, that these radial temperature gradients 

and the related temperature-dependent delay time can be neglected for retention time 

predictions in temperature-programmed liquid chromatography although they may contribute 

to band broadening. Moreover, the results clearly indicate that the LES model can be used for 

method development in high-temperature liquid chromatography without mathematical 

extensions. This means that the heat at the outer side of the column is transferred very fast to 

the middle of the column packing so that the programmed temperature gradient closely 

matches the gradient that the analyte experiences in the column. This statement is in 

agreement with findings by Teutenberg where a prototype column oven based on the same 

concept as the SIM HT-HPLC 200 column oven was employed [43]. 
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However, these results seem to be in contrast to findings by Nikitas and Pappa-Louisi [25]. 

They have introduced a two-mode gradient retention model which permits the simultaneous 

variation of mobile phase composition and temperature. Pappa-Louisi et al. reported an 

average relative error of 11.7% in predicted retention times using temperature gradients from 

15 °C up to 75 °C ( T∆  = 60 °C) under isocratic conditions (40% acetonitrile), where heating 

rates of 2.0, 3.0, 4.0, and 10.0 °C min-1 were investigated. In their study, a normal-bore 

column (150 × 4.6 mm, 3.5 µm) was used and the authors concluded that these errors are 

related to temperature hysteresis phenomena in the column oven and the column. To 

overcome this problem, they extended the model successfully by a differential equation to 

take the hysteresis phenomena into account. After that, an average error of 2.4% in predicted 

retention times was observed. In contrast, two significantly larger temperature intervals from 

60 °C up to 160 °C ( T∆  = 100 °C) and 50 °C up to 180 °C ( T∆  = 130 °C) were employed 

in our study. Moreover, considerably higher heating rates from 1.5 °C min-1 up to 30 °C min-1 

were investigated using high-temperature stable HPLC columns with inner diameters of 1.0, 

2.1, 3.0, and 4.6 mm. Furthermore, in spite of the significant larger temperature intervals as 

well as the higher slopes of the temperature gradients, the observed average relative errors in 

predicted retention times of steroids and PAHs are less than 2% and comparable with the 

results presented by Nikitas and Pappa-Louisi. In general, differences in predicted vs 

experimental retention times should be small, although errors up to 5% are acceptable [27]. 

The mathematical extension of the retention model regarding a temperature-dependent delay 

time as described in the work of Nikitas and Pappa-Louisi is necessary because of the heating 

system. Pappa-Louisi and Nikitas employed a conventional HPLC air-bath column oven for 

their measurements. Thus, the heat transfer takes place between the heated air and the outer 

metal surface of the HPLC column. In our study, a specially designed high-temperature 

column oven was used [41]. In this case, the heat transfer is obtained by block heating where 

the column is tightly enclosed between two aluminum shells which are connected with the 

heating block. Hence, if an air bath column oven is used and temperature gradients are 

employed, a temperature-dependent delay time has to be considered for the prediction of 

retention times.  
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2.5 Conclusion 

In general, the LES model can be used to predict temperature gradients in LC based on two 

initial runs, but this is only true if a high-temperature column oven, based on the block 

heating concept is used. Moreover, precise predictions with an average relative error < 2% 

using a water mobile phase as well as binary mixtures which consist of water and an organic 

co-solvent such as methanol or acetonitrile under isocratic conditions can be made. 

Furthermore, method development is not restricted to a certain inner diameter of the HPLC 

column which enables the use of columns with diameters from at least 1.0 mm up to 4.6 mm. 

Nevertheless, a critical point is the LES approximation in temperature-programmed LC, 

because predictions based on this model are restricted to the experimental conditions. This 

means the predictions are only adequate if the following requirements are met. First, the 

composition of the mobile phase is equal to the composition of the mobile phase which was 

employed for the input runs. Second, the start temperature of the predicted temperature-

gradient runs is equal to the start temperature of the input runs. In a further publication, we 

will describe how some of these limitations can be overcome. 
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Chapter 3. A General Strategy for Performing Temperature 

Programming in High Performance Liquid 

Chromatography – Prediction of Segmented 

Temperature Gradients* 
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Temperature Programming in High Performance Liquid Chromatography: Prediction of 
Segmented Temperature Gradients, Journal of Chromatography A, 2011, 1218 (39), 6898-
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3.1 Introduction 

In recent years some high-temperature liquid chromatography (HT-HPLC) based hyphenation 

techniques [1-13] have been developed. These techniques require the use of a water mobile 

phase or the content of organic solvent in the mobile phase being as low as possible. In 

contrast to other approaches where temperature is usually discussed in terms of speeding up a 

separation [14,15] or increasing the efficiency [16,17], these hyphenation techniques make 

use of the fact that increasing the temperature of water results in a decrease in its static 

permittivity [18]. In other words, the higher the temperature of water, the lower the polarity of 

a water mobile phase. Therefore, whenever a mixture has to be separated where the polarity of 

the compounds is not too broad, temperature gradients can be employed instead of solvent 

gradients as has been shown elsewhere [7,19-21]. Hence, the practitioner is faced with the 

problem how to develop a method where temperature gradients are employed instead of 

solvent gradients. Most attempts to achieve adequate separations in temperature-programming 

mode under isocratic or solvent gradient conditions are governed by trial and error [22-25], 

which also owes to the lack of sufficient prediction models. To overcome this problem, 

Nikitas and Pappa-Louisi developed retention models which permit prediction of retention 

times when solvent composition and temperature are changed simultaneously [26-28]. To 

date, their models were tested using only linear temperature gradients with moderate slopes 

from 2 °C min-1 up to 10 °C min-1 in a small temperature range from 15 °C up to 75 °C 

( T∆  = 60 °C ). 

In a recent study [29] we could show that the linear elution strength (LES) model from 

temperature-programmed gas chromatography (GC) can be employed for retention time 

predictions for linear temperature gradients in temperature-programmed liquid 

chromatography (LC) under isocratic conditions. It was shown that retention times for 

temperature gradients with slopes up to 30 °C min-1 in a temperature range from 50 °C up to 

180 °C can be predicted with high accuracy when the start temperature of the gradient is not 

changed. On the basis of these findings the aim of this work was to extend this model in order 

to predict retention times for more complex segmented temperature gradients in LC under 

isocratic conditions and to evaluate the errors in predicted retention times when the start 

temperature of the gradient is changed. 

In high-temperature LC, the practitioner has the choice between an isothermal or a 

temperature-gradient operation mode. In order to reduce the experimental work during 
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method development, it will be advantageous when only one basic data set is used for 

isothermal as well as temperature-gradient method development. In this context, the 

generation of temperature-gradient input data is less time consuming and requires less 

experimental work when compared to isothermal data acquisition. Moreover, in temperature-

programming mode, samples containing analytes with different polarities can be measured 

within the same chromatographic run. In isothermal operation mode, the less polar 

compounds of the sample mixture will be retarded strongly at low temperatures, giving rise to 

very long retention times. Therefore, it would be advantageous if it is possible to predict 

isothermal as well as temperature-gradient separations based only on temperature-gradient 

input data, despite the fact that isothermal input data might be more precise and less affected 

by linear retention assumptions than temperature-gradient input data [30]. Moreover, 

systematic method development of an isothermal as well as temperature-gradient separation 

of selected sulfonamides will be performed based on as few input measurements as possible. 

Finally, both operation modes will be compared. 
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3.2 Experimental Section 

3.2.1 Chemicals 

A test mixture of five sulfonamides consisting of sulfadiazine, sulfathiazole, sulfamerazine, 

sulfamethazine, sulfamethoxazole, and uracil was used. The analytes were dissolved in 

75/25 (v/v) water/acetonitrile at a concentration of 50 µg mL-1. Formic acid was employed to 

adjust the pH of the mobile phase to 2.7. All chemicals given above were purchased from 

Sigma-Aldrich (Seelze, Germany) in p. a. quality and used without further purification. High-

purity water was prepared by an Elix 10-Milli-Q Plus water purification system (Millipore, 

Eschborn, Germany). Acetonitrile (ACN) was purchased from LGC Standards (Wesel, 

Germany) in Optigrade quality. 

3.2.2 HPLC System 

A Shimadzu HPLC system (Shimadzu, Duisburg, Germany) was used which consists of two 

LC-10ADVP pumps, a DGU-14 A degasser, an SIL-10ADVP autosampler, an SPD-M10AVP 

diode array detector (DAD), and an SCL-10AVP controller. A 500 psi back pressure regulator 

(GammaAnalysenTechnik, Bremerhaven, Germany) was connected behind the DAD to keep 

the mobile phase in the liquid state. For data acquisition and analysis, Shimadzu LCsolution 

(version 1.21 SP 1) was used. 

3.2.3 Heating System 

To heat the mobile and stationary phase a commercially available SIM HT-HPLC 200 high-

temperature column oven (SIM - Scientific Instruments Manufacturer, Oberhausen, Germany) 

was used [31,32]. The heating system was specially designed for high-temperature liquid 

chromatography and consists of three modules, the eluent preheating unit, the column heating 

unit and the eluent cooling unit. The heat transfer is achieved by block heating which means 

that the capillaries and column are tightly enclosed by aluminium blocks. The three heating 

units can be controlled independently, which guarantees that the temperature of the mobile 

phase entering the column and the temperature of the stationary phase can be exactly 

matched. In order to compensate effects which are related to frictional heating, the 

practitioner can define a temperature difference between the eluent preheating and the column 

heating unit. If a temperature gradient is applied, the temperature of the preheating unit and 
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the temperature of the column are increased simultaneously. For all measurements performed 

in this study, the temperature settings of the preheating unit and the column were identical. 

3.2.4 Isothermal/Isocratic Measurements 

The measurements were carried out on a Waters XBridge C18 (75 × 4.6 mm; 2.5 µm) column 

using a water mobile phase with 0.1% formic acid at a flow rate of 1.0 mL min-1. For 

isothermal runs at 60 °C and 80 °C the injection volume was set to 2 µL whereas for 

measurements from 100 °C up to 180 °C the injection volume was set to 1 µL. UV detection 

was carried out at a wavelength of 270 nm. The sampling rate and the time constant of the UV 

detector were set to 3.125 Hz and 0.32 sec, respectively. 

3.2.5 Temperature-Gradient Measurements 

Two temperature ranges from 60 °C up to 180 °C and 100 °C up to 180 °C were investigated. 

Temperature gradients with slopes from 2 °C min-1 up to 12 °C min-1 were applied. All other 

chromatographic conditions equal the respective isothermal measurements. 
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3.3 Theory 

In a previous study [29] we have shown that the LES model could successfully be adapted 

from temperature-programmed gas chromatography to temperature-programmed liquid 

chromatography. Moreover, it was shown that it is not necessary to extend the LES model to 

consider a temperature-dependent delay time when a high-temperature column oven based on 

block heating is employed. Using the LES model the retention time Rt  of an analyte can be 

predicted as a function of experimental conditions using equations 3-1 and 3-2 [33,34].  

( )2.30
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where 0t  is the column dead time and 0k  is the retention factor of the solute at the start of the 

temperature gradient. The temperature gradient-steepness parameter Tb  consists of the solute 

constant TS , the temperature range T∆  ( final startT T T∆ = − ) and the temperature gradient time 

tG . For the prediction of retention times, two experimental temperature-gradient runs are 

required. These runs should differ in temperature-gradient time by a factor of at least three 

whereas all other experimental conditions are kept constant [33,35]. Moreover, for reliable 

predictions the analytes should elute within the temperature-gradient window. On the basis of 

two temperature-gradient measurements, values of TS  and 0k  for each analyte are derived by 

numerical solution of equations 3-1 and 3-2. This procedure is very similar to numerical 

solutions of the LSS relationship [36-38]. An example of how a spreadsheet calculator can be 

used for the numerical solution is given in the Appendix for Chapter 3. 

Regarding the estimation of the column dead time 0t  usually the retention time of an 

unretained compound such as uracil is used [39]. However, the column dead time can also be 

approximated by equation 3-3 [40]. 
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4

0 5 10 cLdt
F

−≈ ×            (3-3) 

Here L  is the column length in mm, cd  is the column inner diameter in mm, and F  is the 

flow rate in mL min-1. In this study the column dead time was calculated according to 

equation 3-3 by using a factor of 44.85 10−×  instead of 45 10−× . 

In order to predict retention times for segmented temperature gradients, an equation is 

required which describes the fractional migration r  of the solute across the column during a 
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given temperature segment. In this case, a similar derivation to solvent gradient elution yields 

[33,41,42]. 

( )2.30
0 0ln 1

2.3
Tb r

R
T

tt e k k
b
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Furthermore, in the case where a temperature-gradient method consists of an 

isothermal/isocratic hold, equation 3-5 can be employed to calculate the retention time of an 

analyte during this segment. 

( )0 0 1Rt rt k= +           (3-5) 

The sum of the fractional migration r  of an analyte across the column during each 

temperature segment can also be written as ( 1 2 ... 1nr r r+ + = ). Moreover, equation 3-6 

describes the change of the retention factor of an analyte during each temperature segment 

and is required to calculate the retention factor rk of the analyte at the end of a temperature 

segment. This value has then to be used as initial value for the next temperature segment and 

employed instead of 0k  in equation 3-4.  

0
0

log log T R
r

b tk k
t

= −           (3-6)  

Finally, the sum of the calculated retention times of an analyte for all temperature segments 

represents the total retention time of a multi-step temperature gradient. An example of how a 

spreadsheet calculator can be used to calculate the total retention time of an analyte depending 

on segmented temperature gradients is given in the Appendix for Chapter 3.  

In order to predict isothermal retention times based on temperature gradients, the LES 

approximation assumes that there is a relationship between the retention factor of the analyte 

in temperature gradient and in isothermal elution [33]. Hence, equation 3-7 is employed to 

predict isothermal retention times of the analytes based on two temperature-gradient runs in 

temperature-programmed GC, where 'A  represents an analyte specific constant and ik  

describes the isothermal retention factor of the solute i . 

log '= −i Tk A S T           (3-7) 

Moreover, equation 3-7 is used to calculate the retention factor of an analyte when the start 

temperature of the temperature gradient for which the retention factors are being predicted is 

different from the start temperature of the gradients which have been employed during data 

fitting. 
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The described simplification in equation 3-7 is very similar to solvent gradient elution, where 

isocratic retention times can be approximated based on two solvent gradient input runs 

[43,44]. Nevertheless, the approach to predict isothermal retention times based on 

temperature-gradient data has not been used frequently, because usually the van’t Hoff 

relationship is employed to predict isothermal data in chromatography which is given as 

ln lni
H Sk

RT R
β∆ ∆

= − + +          (3-8) 

where T  is the column temperature in K, ik  refers to the retention factor of the solute i , H∆  

and S∆  are the enthalpy and entropy of transfer of the solute i  from the mobile into the 

stationary phase, R  is the ideal gas constant and β  is the volume phase ratio of the 

stationary and mobile phase. Moreover, the van’t Hoff equation assumes that the enthalpy and 

entropy of transfer and the volume phase ratio are independent from temperature [45-47]. It 

should be noted that equations 3-7 and 3-8 distinguish between the usually employed input 

data. Equation 3-7 makes use of temperature-gradient data whereas isothermal data are 

employed using equation 3-8. 
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3.4 Results and Discussion 

3.4.1 Isothermal Predictions based on Temperature-Gradient Input Data 

Method development always targets a separation with a user-defined resolution as fast as 

possible. In high-temperature liquid chromatography the user has the choice between an 

isothermal and temperature-programming mode to achieve a suitable separation. As pointed 

out before, under certain conditions method development based on temperature-gradient 

measurements provides some advantages. Therefore, the accuracy of isothermal retention 

time predictions based on temperature-gradient input runs was investigated first. 

Regarding the LES model, predictions of isothermal retention times in GC can be performed 

based on two temperature-gradient runs [33,34,48]. Afterwards, equation 3-7 was employed 

to calculate the corresponding isothermal separations. Analogous to isothermal predictions in 

temperature-programmed GC, the feasibility to make use of equation 3-7 was investigated to 

predict isothermal/isocratic separations in temperature-programmed LC. For this approach, 

the sulfonamide test mixture was employed and a temperature range from 60 °C up to 180 °C 

was chosen. Within this range two temperature gradients were measured on a Waters XBridge 

C18 column. Afterwards, the retention data of each analyte from these two temperature 

gradients were employed to predict isothermal/isocratic retention factors at 60, 80, 100, 120, 

140, 160, and 180 °C. The results of these isothermal retention factor predictions are shown in 

Table 3-1. 

As can be seen, significant deviations between predicted and experimental retention factors 

are observed. The relative error for predicted retention factors is between 2.9% and 169.6%. 

Moreover, Table 3-1 points out that calculations based on equation 3-7 usually yield retention 

factors which are much higher than the experimental values, except for a temperature of 60 °C 

which is the start temperature of the basic temperature-gradient measurements. If retention 

times are calculated for a temperature of 60 °C, the average error is 4.3%. Very similar results 

were obtained using selected polycyclic aromatic hydrocarbons as model compounds, 

different columns and different mobile phases consisting of water and methanol as well as 

acetonitrile (data not shown here). 
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Table 3-1: Comparison of predicted vs experimentally obtained retention factors of selected 
sulfonamides. 

temperature 
[°C] 

analyte k0, predicted a, b k0, experimental b difference 
of k0 

relative 
error [%] 

60 

sulfadiazine 11.16 10.57 0.59 5.6 
sulfathiazole 16.08 15.55 0.53 3.4 
sulfamerazine 28.68 27.47 1.21 4.4 
sulfamethoxazole 61.29 65.39 4.10 6.3 
sulfamethazine 71.29 69.92 2.00 2.9 

80 

sulfadiazine 8.28 6.61 1.67 25.3 
sulfathiazole 10.68 8.51 2.17 25.5 
sulfamerazine 19.69 17.00 2.69 15.8 
sulfamethoxazole 36.83 33.75 3.08 9.1 
sulfamethazine 46.34 42.36 3.98 9.4 

100 

sulfadiazine 6.14 4.26 1.88 44.1 
sulfathiazole 7.09 4.86 2.23 45.9 
sulfamerazine 13.51 10.68 2.83 26.5 
sulfamethoxazole 22.13 18.09 4.04 22.3 
sulfamethazine 29.86 25.96 3.90 15.0 

120 

sulfadiazine 4.56 2.74 1.82 66.4 
sulfathiazole 4.71 2.74 1.97 71.9 
sulfamerazine 9.28 6.53 2.75 42.1 
sulfamethoxazole 13.30 9.69 3.61 37.3 
sulfamethazine 19.24 15.30 3.94 25.8 

140 

sulfadiazine 3.38 1.70 1.68 98.8 
sulfathiazole 3.13 1.60 1.53 95.6 
sulfamerazine 6.37 3.96 2.41 60.9 
sulfamethoxazole 7.99 5.29 2.70 51.0 
sulfamethazine 12.40 8.95 3.45 38.5 

160 

sulfadiazine 2.51 1.09 1.42 130.3 
sulfathiazole 2.08 0.95 1.13 118.9 
sulfamerazine 4.37 2.44 1.93 79.1 
sulfamethoxazole 4.80 2.97 1.83 61.6 
sulfamethazine 7.99 5.25 2.74 52.2 

180 

sulfadiazine 1.86 0.69 1.17 169.6 
sulfathiazole 1.38 0.56 0.82 146.4 
sulfamerazine 3.00 1.49 1.51 101.3 
sulfamethoxazole 2.88 1.71 1.17 68.4 
sulfamethazine 5.15 3.10 2.05 66.1 

a Predictions based on experimental temperature-gradient measurements from 60 °C to 180 °C 

 within 20 (6 °C min-1) and 60 (2 °C min-1) minutes according to equation 3-7. 
b For calculations a column dead time of 0.77 minutes was used. 
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In temperature-programmed GC Bautz and co-workers concluded that isothermal retention 

time predictions based on two temperature gradients can be performed with an error smaller 

than 5% within a temperature range from 50 °C up to 250 °C where temperature gradients 

with slopes from 1 °C min-1 up to 12 °C min-1 were used [33,34,48,49]. These results are in 

contrast to our findings. However, they pointed out that significant errors in predicted 

isothermal retention times can arise from extrapolation of equation 3-7 with regard to the 

considered retention factor range. Furthermore, Nawas and Poole [50] also investigated the 

possibility to predict isothermal retention times based on two temperature gradients in a 

temperature range from 60 °C to 160 °C in temperature-programmed GC. In their study 

temperature gradients with slopes of 3 °C min-1 and 12 °C min-1 were employed to predict 

isothermal retention times in the range from 60 °C up to 140 °C. They concluded that the 

linear elution strength model is unsuitable to predict isothermal retention times of solutes over 

a wide temperature range. It should be noted that the studies cited above were carried out in 

temperature-programmed GC, whereas in our study the LES approximation is employed in 

temperature-programmed LC. One could think that thermal mass effects or thermal lag 

phenomena might be responsible for the observed major relative errors of predicted retention 

times, because a 4.6 mm ID column has been used in this study. It should be considered, 

however, that a specially designed high-temperature column oven was employed which 

assures that the heat at the outer side of the column is transferred very quickly to the column 

packing. Therefore, the applied temperature gradient closely matches the gradient that the 

analyte experiences in the column. This was also experimentally confirmed by Teutenberg 

et al. for a column with an inner diameter of 4.6 mm [31,51], which is in complete agreement 

with our experimental results given in reference [29]. 

Therefore, it becomes obvious that isothermal predictions based on temperature-gradient input 

data, calculated by means of equation 3-7 will not give accurate results in temperature-

programmed LC. This also restricts the ability to predict temperature-gradients in LC, where 

the start temperature of the predicted gradient differs from the start temperature of the 

gradients which have been employed during data fitting. This means, if the data fitting was 

carried out using temperature gradients from 60 °C up to 180 °C the same start temperature of 

60 °C as well as the same composition of the mobile phase have to be chosen for method 

development.  
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Hence, in order to overcome the restriction regarding the start temperature of the temperature 

gradient, a mathematical expression is necessary which describes the dependence of the 

retention factor of a solute on temperature at a constant mobile phase composition. From the 

point of structured method development in temperature-programmed LC this means that the 

van’t Hoff equation should be employed to describe the relationship between retention and 

temperature. If linearity is assumed, at least two additional isothermal/isocratic input runs are 

necessary.  
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3.4.2 Isothermal Predictions based on Isothermal Input Data 

For these predictions the sulfonamide test mixture was employed and a temperature range 

from 60 °C up to 180 °C was chosen. Within this range a van’t Hoff analysis was carried out 

with a temperature increment of 20 °C at a flow rate of 1.0 mL min-1 using a water mobile 

phase with 0.1% formic acid. Figure 3-1 shows the van’t Hoff plots which are based on these 

measurements. 

 

Figure 3-1: Van’t Hoff plot of selected sulfonamides in a temperature interval from 60 °C 
to 180 °C. Chromatographic conditions: stationary phase: Waters XBridge C18  
(75 × 4.6 mm, 2.5 µm); mobile phase: deionized water with 0.1% formic acid; flow rate: 
1.0 mL min-1; injection volume: 2 µL at 60 °C and 80 °C, 1 µL from 100 °C to 180 °C; 
detection: UV at 270 nm. Coefficient of determination of linear regression (R2): sulfa-
diazine = 0.9915, sulfathiazole = 0.9955, sulfamerazine = 0.9908, sulfamethoxazole = 0.9963, 
sulfamethazine = 0.9893. 
 

It can be seen that each sulfonamide exhibits a curved van’t Hoff plot over the whole 

temperature range whereas theoretically a straight line was expected. Furthermore, deviations 

of the expected linear behavior of the van’t Hoff plot of each sulfonamide are underlined by 

the coefficient of determination (R2) of linear regression and depicted in the figure caption. 

Moreover, it can also be seen that the elution order of sulfathiazole and sulfadiazine is 
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changed at a temperature of approximately 120 °C underlining that temperature can be 

employed to change selectivity in LC [17,52]. 

In the scientific literature, linear [53,54] as well as non-linear van’t Hoff plots [55,56] are 

described using different mobile and stationary phases and analytes. The scope of our study, 

however, was not to investigate why non-linear van’t Hoff plots were observed but rather how 

this non-linear plots of ln k  vs 1/ T  can be handled during structured method development in 

high-temperature liquid chromatography. Usually, two isothermal/isocratic runs are employed 

for linear regression of the ln k  vs 1/ T  plot which will then be used to predict isothermal 

retention factors. Related to our isothermal/isocratic sulfonamide measurements, a linear 

regression of the ln k  vs 1/ T  plot was carried out using retention data from 60 °C and 180 °C 

to predict retention times of the analytes at temperatures of 80, 100, 120, 140, and 160 °C. 

The relative errors between predicted and experimental retention times of the sulfonamides 

are shown in Table 3-2 and make clear that this approach yields errors as large as 23%. 
 

Table 3-2: Comparison of relative errors between predicted and experimental retention times 
of selected sulfonamides calculated by linear regression of the van’t Hoff plot using two 
isothermal/isocratic runs at 60 °C and 180 °C. 

 relative error [%] at selected temperatures 
analyte 80 °C 100 °C 120 °C 140 °C 160 °C 
sulfadiazine −9.5 −14.6 −14.8 −10.0 −5.5 
sulfathiazole −9.4 −14.1 −12.6 −9.4 −5.0 
sulfamerazine −12.5 −19.0 −18.6 −14.0 −7.6 
sulfamethoxazole −10.8 −16.4 −15.7 −11.5 −6.3 
sulfamethazine −14.9 −22.8 −22.6 −17.9 −10.0 
average error [%] 11.4 17.4 16.9 12.6 6.9 
 
In other words, when a large temperature interval such as 120 °C is studied and non-linear 

van’t Hoff plots are observed, isothermal retention time predictions based on linear regression 

of the ln k  vs 1/ T  plot are unsuitable during method development in high temperature LC. 

There are some options to overcome this problem. First it is possible to reduce the 

temperature range, e.g. to T∆  = 40 °C or 50 °C, because then a linear regression of the 

ln k  vs 1/ T  plot should yield a more reliable isothermal prediction. Regarding our 

measurements, a decrease of the considered temperature range from T∆  = 120 °C  

(60 °C - 180 °C) to T∆  = 40 °C (60 °C - 100 °C) results in a significant improvement in the 
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accuracy of predicted retention times. In this case a maximal relative error of 2.2% was 

observed. 

Another option is the use of mathematical expressions which are able to describe curved plots 

of ln k  vs 1/ T . In this context Pappa-Louisi and Nikitas could show that other equations can 

be successfully employed to fit curved ln k  vs 1/ T  plots where only measurements at two 

temperatures were necessary [28]. They also noted that when a model is used which predicts 

curved plots of ln k  vs 1/ T under isocratic conditions, the operator should carefully check 

that no problems arise from overfitting the experimental data [28]. From a practical point of 

view, this means that additional runs are required so that the user can be sure that the data 

fitting was successful.  

However, it is also possible to consider a plot of ln k  vs T  [50], which is shown in  

Figure 3-2. 

 

 

Figure 3-2: Plot of ln k  vs T  temperature of selected sulfonamides in a temperature range 
from 60 °C to 180 °C. Chromatographic conditions: stationary phase: Waters XBridge C18  
(75 × 4.6 mm, 2.5 µm); mobile phase: deionized water with 0.1% formic acid; flow rate: 
1.0 mL min-1; injection volume: 2 µL at 60 °C and 80 °C, 1 µL from 100 °C to 180 °C; 
detection: UV at 270 nm. Coefficient of determination of linear regression (R2): sulfa-
diazine = 0.9999, sulfathiazole = 0.9995, sulfamerazine = 0.9999, sulfamethoxazole = 0.9992, 
sulfamethazine = 0.9997. 
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It can be seen that all sulfonamides exhibit a linear plot of ln k  vs T , which is also underlined 

by the coefficient of determination of linear regression and depicted in the figure caption for 

each analyte. Analogous to the van’t Hoff plot a linear regression was carried out using the 

retention data from 60 °C and 180 °C based on the plot of ln k  vs T . Afterwards, retention 

times of all analytes at temperatures of 80, 100, 120, 140 and 160 °C were predicted. 

Subsequently, the predicted and experimentally obtained retention times were compared. The 

relative error was calculated and is represented in Table 3-3. 
 

Table 3-3: Comparison of relative errors between predicted and experimental retention times 
of selected sulfonamides calculated by linear regression of the ln k  vs T  plot using two 
isothermal/isocratic runs at 60 °C and 180 °C. 

 relative error [%] at selected temperatures 
analyte 80 °C 100 °C 120 °C 140 °C 160 °C 
sulfadiazine −1.2 +0.3 +1.3 −0.3 +0.3 
sulfathiazole −4.2 −4.4 −5.0 −3.2 −1.0 
sulfamerazine +0.5 +2.2 +1.6 +0.3 +0.1 
sulfamethoxazole −5.4 −6.9 −8.4 −7.7 −4.1 
sulfamethazine +1.8 +4.5 +3.5 +1.9 +0.6 
average error [%] 2.6 3.7 4.0 2.7 1.2 

It can be concluded that the predicted retention times are now in agreement with the 

experimental data. Isothermal/isocratic retention times of the sulfonamides can be predicted 

with a relative error of less than 5% except for sulfamethoxazole where a maximal relative 

error of 8.4% was observed at 120 °C. Compared to predictions based on the van’t Hoff 

analysis (see Table 3-2), predictions using a plot of ln k  vs T  obviously yield more accurate 

isothermal retention times. However, based on the results shown above, a strictly linear 

relationship between ln k  and T  cannot be assumed for all possible analytes. For systematic 

method development it would be advantageous to perform three isothermal measurements. 

Afterwards, the user is able to choose a plot and/or a mathematical expression where the error 

between prediction and experiment is as low as possible. 

Because of the results shown in Figure 3-2 and Table 3-3 and in order to underline that a plot 

of ln k  vs T  can be a useful tool, linear regressions of the ln k  vs T  plot have been employed 

for isothermal method development. This approach will be described exemplarily for the 

isothermal separation of the sulfonamide mixture. Considering Figure 3-2 there are two 

temperature ranges where an isothermal separation of the sulfonamides will be possible, 



Chapter 3 56 
  

extending from 70 °C to 100 °C and from 150 °C to 180 °C. This becomes also clear by the 

experimental chromatograms shown in Figure 3-3.  

At a temperature of 60 °C (Figure 3-3 a) the separation of the first three sulfonamides is very 

good with a resolution (R) higher than 5.8 whereas the critical resolution (RS) between 

sulfamethoxazole and sulfamethazine (peak pair 5/6) is inadequate (RS = 0.9). Furthermore, at 

this temperature a long analysis time of approximately 60 minutes can be observed, and the 

last peaks are eluted as broad bands. Increasing the temperature to 80 °C (Figure 3-3 b), the 

analytes can now be baseline separated within approximately 36 minutes with a critical 

resolution between sulfadiazine and sulfathiazole (peak pair 2/3) of 4.0. In order to shorten 

the analysis time, the temperature can be increased further. For example, at a temperature of 

120 °C (Figure 3-3 d) the resolution between peak pair 5/6 is now very high (R = 7.2), 

whereas sulfadiazine and sulfathiazole completely co-elute. At this temperature, however, the 

analysis time was reduced to approximately 14 minutes. If the temperature is increased even 

further to e.g. 180 °C (Figure 3-3 g) an analysis time of about 3.5 minutes can be obtained. 

Moreover, all sulfonamides were separated with a critical resolution of 1.1. This might be 

appropriate for UV detection but is insufficient for the special hyphenation techniques 

mentioned in the introduction. The reason is that these techniques require a baseline 

separation of the analytes. In other words, the critical resolution must exceed 1.5. Moreover, 

often the analytes cannot be dissolved in water and a certain organic content is necessary. 

This means that the injected sample plug might contain a high amount of an organic solvent 

which results in a very strong solvent peak at the beginning of the chromatogram. The tailing 

of the solvent peak can extend over 5 to 10 minutes and the early eluting peaks elute on the 

tailing of the solvent peak. To overcome this issue, a method where the first analyte elutes 

after several minutes is needed. Moreover, it has to be considered that the column lifetime can 

be significantly increased if the separation is performed at 80 °C when compared to a 

separation at 180 °C. Therefore, the isothermal separation of the sulfonamides at 180 °C 

(Figure 3-3 g) is rather unsuitable when considering both column lifetime and the 

requirements of special hyphenation techniques. 
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Figure 3-3: Isothermal separations of five sulfonamides and uracil. Chromatographic 
conditions: stationary phase: Waters XBridge C18 (75 × 4.6 mm, 2.5 µm); mobile phase: 
deionized water with 0.1% formic acid; flow rate: 1.0 mL min-1; injection volume: 2 µL at 
60 °C and 80 °C, 1 µL from 100 °C to 180 °C; detection: UV at 270 nm. Analytes: 1) uracil, 
2) sulfadiazine, 3) sulfathiazole, 4) sulfamerazine, 5) sulfamethoxazole, 6) sulfamethazine. 
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3.4.3 Temperature-Gradient Predictions based on Temperature-Gradient Runs 
and Isothermal Measurements 

The other option to achieve a good separation of the sulfonamide mixture will be the use of 

more complex segmented temperature gradients. Complex means that the temperature 

gradients consist of gradients with different slopes or a combination of temperature gradients 

and isothermal holds. The temperature-gradient method development starts with two initial 

temperature-gradient runs to calculate the required LES model parameters TS  and 0k  for each 

sulfonamide in the desired temperature range. In this case a temperature range from 60 °C up 

to 180 °C was chosen. Within this range two temperature gradients were applied with slopes 

of 2 °C and 6 °C min-1. Afterwards, the model parameters TS  and 0k  for each sulfonamide 

were calculated. In the case of simple linear temperature gradients with different gradient 

slopes equations 3-1 and 3-2 are employed. In the case of more complex segmented 

temperature gradients, equations 3-4 to 3-6 are also needed to calculate the fractional 

migration of the solutes across the column during each temperature segment. On the basis of 

the LES model, two methods were developed for the separation of the sulfonamides which are 

shown in Figure 3-4.  

The first method has a start temperature of 60 °C and consists of two linear temperature 

gradients with slopes of approximately 12 °C min-1 and two isothermal holds at 115 °C and 

180 °C, the latter temperature corresponding to the upper temperature limit. The separation of 

the sulfonamides was performed within 13 minutes with a critical resolution of 3.4 between 

sulfadiazine and sulfathiazole. In order to demonstrate how well retention times can be 

simulated for segmented temperature gradients in LC, Table 3-4 shows a comparison between 

predicted and experimental retention times of the sulfonamides with a maximal relative error 

of 4.3% (average relative error: 2.2%). Moreover, it has to be considered that method 

development is based on only two temperature-gradient basic measurements. A detailed 

calculation of predicted retention times of the sulfonamides shown in Figure 3-4 is given in 

the Appendix for Chapter 3. 
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Figure 3-4: Separation of five sulfonamides and uracil by temperature gradient elution. a) start 
temperature: 60 °C, b) start temperature 100 °C. Chromatographic conditions: stationary 
phase: Waters XBridge C18 (75 × 4.6 mm, 2.5 µm); mobile phase: deionized water with 0.1% 
formic acid; flow rate: 1.0 mL min-1; temperature gradient: see Figure 3-4; injection volume: 
1 µL; detection: UV at 270 nm. Analytes: 1) uracil, 2) sulfadiazine 3) sulfathiazole,  
4) sulfamerazine, 5) sulfamethoxazole, 6) sulfamethazine. 
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Table 3-4: Comparison of predicted retention times calculated by LES model and 
experimental retention times of sulfonamides. 

figure analyte expt. RT 
[min] 

pred. RT 
[min] 

difference 
[min] 

relative 
error [%] 

3-4 a 

sulfadiazine 5.56 5.80 +0.24 +4.3 
sulfathiazole 6.13 6.38 +0.25 +4.1 
sulfamerazine 8.89 9.07 +0.18 +2.0 
sulfamethoxazole 10.41 10.40 −0.01 −0.1 
sulfamethazine 11.93 12.01 +0.08 +0.6 

3-4 b 

sulfadiazine 4.10 4.03 −0.07 −1.7 
sulfathiazole 4.56 4.57 +0.01 +0.2 
sulfamerazine 6.91 6.53 −0.38 −5.5 
sulfamethoxazole 7.80 7.49 −0.31 −3.9 
sulfamethazine 8.94 8.64 −0.30 −3.4 

 

As pointed out before, the method shown in Figure 3-4 a has a start temperature of the 

gradient of 60 °C. In order to shorten the analysis time and concurrently increase sample 

throughput it is possible to choose a higher start temperature than 60 °C for the temperature 

gradient. In this case, new 0k  values of all analytes at the desired start temperature are 

required which can be calculated from the ln k  vs T  plot. Hence, the operator should perform 

two additional isothermal/isocratic runs. To verify this approach a temperature of 100 °C was 

chosen as the new start temperature of the temperature gradient and isothermal/isocratic 

retention data from 60 °C and 180 °C were employed to build the ln k  vs T  plot. Afterwards, 

a linear regression of this plot was performed to calculate the required 0k  values for each 

sulfonamide which correspond to a temperature of 100 °C. The upper temperature limit was 

again set to 180 °C. The required TS  values were taken from the fitting of the temperature-

gradient runs in the temperature range from 60 °C to 180 °C. Subsequently, a method for the 

separation of the sulfonamides was developed and is shown in Figure 3-4 b. 

A baseline separation of the analytes can be achieved within approximately 9.5 minutes with a 

critical resolution between sulfadiazine and sulfathiazole of 2.1. Moreover, the method 

consists of three segments, two isothermal holds at 100 and 180 °C and a linear temperature 

gradient with a slope of 25 °C min-1. The isothermal hold at the beginning of the 

chromatogram was necessary to avoid co-elution of sulfadiazine and sulfathiazole. As can be 

seen from Table 3-4 predicted retention times are also in good agreement with the 

experimental data except for sulfamerazine where a relative error of 5.5% was observed. For 
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the other analytes, a relative error less than 4% and an average relative error of 2.9% were 

calculated. From a practical point of view, the method shown in Figure 3-4 a might be 

preferred using special hyphenation techniques because of the higher resolution between the 

critical peak pair. Moreover, for method comparison the column lifetime, especially at 

temperatures higher than 150 °C, has also to be considered. For both methods shown in 

Figure 3-4, the column is exposed to a temperature higher than 150 °C for approximately 

4 minutes, but the methods differ in the isothermal hold at 180 °C. The temperature gradient 

shown in Figure 3-4 a contains an isothermal hold at 180 °C for 1 minute, whereas the column 

is exposed for 3 minutes to 180 °C using the method shown in Figure 3-4 b. In order to 

increase the column lifetime, the separation method shown in Figure 3-4 a will be preferred.  

Considering the accuracy of temperature-gradient predictions under isocratic conditions in 

LC, it can be pointed out that the results shown in this study are comparable to the results of 

Nikitas and Pappa-Louisi. For example, Pappa-Louisi et al. [27] reported an average relative 

error of 2.4% for predicted retention times within a temperature interval from 15 °C up to 

75 °C ( T∆  = 60 °C) where an isocratic mobile phase (40% acetonitrile) was employed. 

During their work linear temperature gradients with slopes of 2.0, 3.0, 4.0 and 10.0 °C min-1 

were investigated using a conventional-bore HPLC column (150 × 4.6 mm, 3.5 µm). In our 

study, a twofold larger temperature interval from 60 °C up to 180 °C ( T∆  = 120 °C) was 

investigated. Moreover, within this range complex segmented temperature gradients with 

slopes of 12 °C min-1 (Figure 3-4 a) and 25 °C min-1 (Figure 3-4 b) were predicted. 
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3.4.4 Comparison of the Isothermal and Temperature-Gradient Method 

In this section, the developed isothermal as well as temperature-gradient method of the 

sulfonamide separations will be compared. The corresponding chromatograms of both 

methods are depicted in Figure 3-5. 

 

 

Figure 3-5: Comparison between the a) isothermal and b) temperature-gradient elution of 
selected sulfonamides. Chromatographic conditions: stationary phase: Waters XBridge C18 
(75 × 4.6 mm, 2.5 µm); mobile phase: deionized water with 0.1% formic acid; flow rate: 
1.0 mL min-1; temperature: a) 80 °C, b) temperature gradient the same as in Figure 3-4 a; 
injection volume: a) 2 µL, b) 1 µL. Analytes: 1) uracil, 2) sulfadiazine, 3) sulfathiazole, 
4) sulfamerazine, 5) sulfamethoxazole, 6) sulfamethazine. 
 

As can be seen, the analysis time of the developed temperature gradient method shown in 

Figure 3-5 b is three times faster than the isothermal separation at 80 °C (Figure 3-5 a). More 

practically relevant than the analysis time will be the total analysis time including the cycle 

time which is required to cool down the system. In this study the cycle time is referred to a 

state of full equilibration as opposed to a dynamic equilibration. This means that the retention 

time of the solutes are independent of the re-equilibration time [57]. For the column oven in 

this study, a cycle time of 8 minutes was determined to cool down the system from 180 °C to 
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60 °C (data not shown here). Therefore, a total analysis time of the developed temperature-

gradient method of 21 minutes was calculated. Considering the total analysis time, the 

temperature-gradient method is 1.7-times faster than the isothermal method at 80 °C. 

Furthermore, in temperature-programming mode, narrower and higher peaks can be obtained 

which result in lower limits of detection. In our opinion, temperature-programming is the 

method of choice for the separation of the selected sulfonamides, although column lifetime 

can be prolonged when working at 80 °C. 

3.5 Conclusion 

In this study it was investigated whether isothermal retention times can be predicted based on 

two temperature-gradient input measurements by means of equation 3-7. It was shown that 

these predictions failed and a major relative error of predicted isothermal retention factors up 

to 169.6% was observed. However, such isothermal retention factor predictions are required 

to predict temperature gradients with different start temperatures. To overcome this issue, 

additional isothermal data have been employed. In this context it was shown that isothermal 

predictions based on a linear regression of a plot of ln k  vs T  results in more reliable 

predictions than a plot of ln k  vs 1/ T . Therefore, a plot of ln k  vs T  has been employed to 

calculate the required retention factors of the analytes corresponding to the selected start 

temperature. This means that, if a change of the start temperature of the predicted temperature 

gradient is necessary during method development, at least four experimental measurements 

are required, two temperature gradient and two isothermal runs. Retention times for 

segmented temperature gradients could then be predicted with an average relative error of 

2.9%. 

In contrast, in the case where a change of the start temperature of the predicted temperature 

gradient is not necessary, only two basic measurements are required to predict segmented 

temperature gradients with an average relative error of 2.2%.  

The comparison of the observed relative errors using both approaches indicates that the LES 

parameter TS  should be calculated temperature dependent in order to improve the reliability 

of LES based predictions even further. Moreover, it would also be advantageous to extend the 

LES model in order to predict temperature and flow rate gradients simultaneously in order to 

operate the column in its van Deemter minimum as well as to shorten the analysis time even 

more. 
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Furthermore, the application of the described temperature-programming approach is not 

restricted to very polar analytes like sulfonamides. Temperature-programming method 

development can also be applied to non-polar analytes such as steroids [29,51]. In this case, a 

column has to be chosen which is less hydrophobic than hybrid silica based C18 columns, 

because the elution strength of a water mobile phase is too low, even at temperatures as high 

as 200 °C. For this reason, metal oxide-based columns such as polymer coated zirconium 

dioxide would be suitable. 
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Appendix for Chapter 3 
 

Abstract 

The Appendix for Chapter 3 contains additional information about how MS Excel Solver can 

be employed to calculate the required model parameters as well as how the retention time of 

an analyte can be calculated depending on a segmented-temperature gradient in liquid 

chromatography.  
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Appendix 3-1. Determination of the Model Parameters TS  and 0k  

For the determination of the parameters TS  and 0k of the LES model equations A 3-1 and  

A 3-2 are required. 

( )2.30
0 0ln 1

2.3
Tb

R
T

tt e k k
b

 = + −         (A 3-1) 
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The combination of both equations yields 
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= + − ∆  

      (A 3-3) 

Using equation A 3-3, at least two temperature-gradient input measurements are required. 

These runs should differ in the gradient slope of a factor of three. Moreover, selected analytes 

should elute during the applied temperature gradient. Table A 3-1 contains experimentally 

obtained retention times of selected sulfonamides for two temperature-gradient measurements 

from 60 °C to 180 °C within 20 minutes (6 °C min-1) and 60 minutes (2 °C min-1). 
 

Table A 3-1: Overview of experimentally obtained retention times of selected sulfonamides of 
the basis input measurements. Temperature interval 60 °C - 180 °C. 

analyte experimental retention time 
[min], 2 °C min-1 

experimental retention time 
[min], 6 °C min-1 

uracil 1.160 1.156 
sulfadiazine 8.340 6.978 
sulfathiazole 10.660 8.071 
sulfamerazine 16.671 11.579 
sulfamethoxazole 24.547 14.215 
sulfamethazine 28.569 16.487 
 

The numerical solution of equation A 3-3 can be achieved using a spreadsheet calculator such 

as Microsoft Excel Solver. In Figure A 3-1 a screenshot of the spreadsheet calculator is 

presented. 
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Figure A 3-1: Spreadsheet calculator, sheet displaying the equations that are needed to 
calculate TS  and 0k . 

 

Input: 

A number of experimental data have to be determined and specified. 

• the column dead time ( 0t ) 

• the start temperature of the temperature gradient ( startT ) 

• the final temperature of the temperature gradient ( finalT ) 

• the change in temperature during the temperature gradient ( final startT T T∆ = − ) 

• the gradient time of the first temperature gradient ( 1tG ) 

• the gradient time of the second temperature gradient ( 2tG ) 

Moreover, two additional cells have to be defined for TS  and 0k . 

 

Experimental: 

The experimentally obtained retention times of the selected analyte (sulfamethazine) for the 

first and the second temperature gradient have to be specified in the spreadsheet calculator. 

• experimentally obtained  retention time for the first gradient ( ,exp. 1 [min]R runt ) 

• experimentally obtained retention time for the second gradient ( ,exp. 2[min]R runt ) 
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Calculation: 

Here, two cells have to be specified where the theoretical retention times of the selected 

analyte (sulfamethazine) are calculated according to equation A 3-3 for the first and second 

temperature gradient. 

• theoretical retention for the first gradient ( , . 1 [min]R cal runt ) 

• theoretical retention for the first gradient ( , . 2 [min]R cal runt ) 

 

Solver:  

Furthermore, a cell is implemented where the sum of the least squares (SLS) is calculated, 

representing the differences between calculated and experimental retention times for the first 

and second temperature gradient. 

( ) ( )2 2

, . 1 ,exp. 1 , . 2 ,exp. 2R cal run R run R cal run R runSLS t t t t= − + −  

Microsoft Excel Solver is then employed to calculate the values of TS  and 0k  for the selected 

analyte depending on the sum of the least squares being as small as possible. The “Target 

Cell” is the cell which corresponds to the SLS and should be set “Equal To: Min” or a “Value 

of” 0. The cells which are corresponding to TS  and 0k  are the cells used by MS Excel Solver 

to solve the system of equations. Following, the Solver function will search for values of TS  

and 0k  according to equation A 3-3 yielding the same retention times as those obtained 

experimentally. 

The described procedure has to be performed for each analyte in the sample mixture. 
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Appendix 3-2. Calculation of the Retention Time of Sulfamethazine for the 

 Separation shown in Figure 3-4 a 

Appendix 3-2.1. Required Equations 

To calculate the retention time of an analyte for a segmented temperature gradient, equations 

A 3-4 to A 3-6 are needed. Equation A 3-4 describes the retention time of an analyte during a 

certain temperature segment. Equation A 3-5 can be employed to calculate the change of the 

retention factor of an analyte depending on the applied temperature gradient of a temperature 

segment. This value of the retention factor represents the start value of 0k  for the next 

temperature segment. In order to calculate the retention time of an analyte for an 

isothermal/isocratic hold equation A 3-6 should be employed. 

( )2.30
0 0ln 1

2.3
Tb r
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T

tt e k k
b
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0
0
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( )0 0 1Rt rt k= +          (A 3-6) 

 

Appendix 3-2.2. Calculation of the Retention Time of Sulfamethazine for the First 

 Temperature Segment of the Separation shown in Figure 3-4 a 

First, a number of experimental/theoretical data has to be determined and specified  

(Figure A 3-2). 

• the column dead time 0t  (cell: G11) 

• the start temperature of the temperature gradient startT  (cell: G12) 

• the final temperature of the temperature gradient finalT  (cell: G13) 

• the change in temperature during the temperature segment (cell: G15) 

• the gradient time of the temperature segment 1tG  (cell: G16) 

• a cell where the temperature-gradient steepness parameter Tb  will be calculated 

according to equation A 3-2 (cell: C12) 
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• a cell for the fractional migration 1segmentr  of the analyte during the first temperature 

segment (cell: C13) 

• two cells containing the values of TS  (cell: C5) and 0k  (cell: C6) which were 

calculated using the approach described in section Appendix 3-1 

• a cell where the retention time will be calculated according to equation A 3-4  

(cell: C15) 

• a cell where the change of the retention factors during the first segment will be 

calculated according to equation A 3-5 (cells C16 and C17) 

Figure A 3-2 shows a screenshot of the spreadsheet calculator which has been employed to 

calculate the retention time of sulfamethazine for the first temperature segment. 

 

Figure A 3-2: Spreadsheet calculator, sheet displaying the equations that are needed to 
calculate the retention time and fractional migration of sulfamethazine for the first 
temperature segment. 
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The calculation starts by setting the value of the fractional migration of sulfamethazine for the 

first temperature segment to 1, assuming that the analyte migrates completely during the first 

segment. As can be seen from Figure A 3-2, this setting yields a retention time of 

sulfamethazine of 10.57 min (cell: C15). It has to be considered that the maximal retention 

time of sulfamethazine for the first segment can only be equal or lower to the temperature-

gradient time of the first segment (cell: G16). Hence, the maximal retention time of 

sulfamethazine can only be 4.41 min or lower. In other words, if the calculated retention time 

of an analyte for a temperature segment is higher than the temperature-gradient time of the 

segment, the analyte does not elute during this temperature segment. This means that the 

analyte only migrates a certain distance of the total column length during the temperature 

segment.  

Therefore, the fractional migration of the analyte has to be calculated depending on the 

applied temperature gradient of the first temperature segment. Figure A 3-3 shows a 

screenshot of the spreadsheet calculator which has been employed to calculate the fractional 

migration of sulfamethazine for the first temperature segment by means of MS Excel Solver. 

The “Target Cell” corresponds to the retention time of sulfamethazine for the first temperature 

segment (cell: C15) and should be set “Equal To” a “Value of” 4.41 “By Changing Cells” that 

corresponds with the fractional migration (cell: C13) of sulfamethazine during the first 

temperature segment. Now, the solver function will search for a value of the fractional 

migration ( 1segmentr ), yielding a retention time of sulfamethazine of 4.41 min. As can be seen 

from Figure A 3-3, the retention time of sulfamethazine was calculated to 4.41 min for the 

first temperature segment by changing the fractional migration to a value of approximately 

0.1502 corresponding to a migration distance of sulfamethazine of 11.27 mm of the total 

column length during this temperature segment.  

As pointed out before, because of the applied temperature gradient during the first segment, 

the value of the retention factor ( 0k ) of sulfamethazine was changed. Now, the retention 

factor of sulfamethazine corresponding with the final temperature of the first segment which 

is equal to the start temperature of the second temperature segment has to be calculated 

according to equation A 3-5 and yields a value of 21.48 (cell: C17). 



Appendix for Chapter 3 74 
  

 

Figure A 3-3: Spreadsheet calculator, sheet displaying the equations and Solver Parameters 
that are needed to calculate the fractional migration of sulfamethazine for the first temperature 
segment. 
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Appendix 3-2.3. Calculation of the Retention Time of Sulfamethazine for the Second 

 Temperature Segment of the Separation shown in Figure 3-4 a 

It has to be considered that the second segment of the temperature-gradient method is an 

isothermal/isocratic hold. Therefore, the retention time of sulfamethazine has to be calculated 

according to equation A 3-6 instead of equation A 3-4.  

Very similar to the calculation of the retention time of sulfamethazine for the first temperature 

segment, a number of experimental/theoretical data have to be determined and specified for 

the second segment (Figure A 3-4). 

• the column dead time 0t  (cell: G19) 

• the start temperature of the temperature gradient startT  (cell: G20) 

• the final temperature of the temperature gradient finalT  (cell: G21) 

• the change in temperature during the temperature segment (cell: G23) 

• the gradient time of the temperature segment 2tG  (cell: G24) 

• a cell where the temperature-gradient steepness parameter Tb  will be calculated 

according to equation A 3-2 (cell: C20) 

• a cell for the fractional migration 2segmentr  of the analyte during the second temperature 

segment (cell: C21) 

• a cell containing the value of TS  (cell: C5)  

• a cell containing the value of 0k  corresponding to the value of the retention factor 

calculated after the first temperature segment (cell: C17)  

• a cell where the retention time will be calculated according to equation A 3-6  

(cell: C23) 

• a cell where the change of the retention factor during the second segment will be 

calculated according to equation A 3-5 (cells C24 and C25) 

Figure A 3-4 shows a screenshot of the spreadsheet calculator which has been employed to 

calculate the retention time of sulfamethazine for the second temperature segment. 
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Figure A 3-4: Spreadsheet calculator, sheet displaying the equations that are needed to 
calculate the retention time and fractional migration of sulfamethazine for the second 
temperature segment. 
 

The calculation starts with the assumption that sulfamethazine will elute completely during 

the second segment. Therefore, the value for the fractional migration 2segmentr  of 

sulfamethazine will be set to 0.849 ( 11 0.849segmentr− = ). Doing so, a retention time of 

sulfamethazine of 14.71 min was calculated (cell: C23). It has to be considered that the 

temperature-gradient time ( 2segmenttG ) of the second segment was set to 1.58 min. Therefore, 

MS Excel Solver has to be employed to find a value for 2segmentr  yielding a retention time for 

sulfamethazine of 1.58 min for the second temperature segment. Figure A 3-5 depicts the 

necessary equations and Solver Parameters. 
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Figure A 3-5: Spreadsheet calculator, sheet displaying the equations and Solver Parameters 
that are needed to calculate the fractional migration of sulfamethazine for the second 
temperature segment. 
 

The “Target Cell” corresponds to the retention time of sulfamethazine for the second 

temperature segment (cell: C23) and should be set “Equal To” a “Value of” 1.58 “By 

Changing Cells” that corresponds to the fractional migration (cell: C21) of sulfamethazine 

during the second segment. Afterwards, the solver function will search for a value of 2segmentr  

yielding a retention time of 1.58 min for sulfamethazine. A value of approximately 0.0913 

gives the desired retention time and corresponds to a migration distance of sulfamethazine of 

6.85 mm of the total column length during the second temperature segment.  

The second temperature segment of the method is an isothermal/isocratic hold, hence the 

value of the retention factor after this segment equals the value at the start of the second 

temperature segment. 
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Appendix 3-2.4. Calculation of the Retention Time of Sulfamethazine for the Third

 Temperature Segment of the Separation shown in Figure 3-4 a 

For the calculation of the retention of sulfamethazine for the third temperature segment, a 

number of experimental/theoretical data has to be determined and specified (Figure A 3-6). 

• the column dead time 0t  (cell: G27) 

• the start temperature of the temperature gradient startT  (cell: G28) 

• the final temperature of the temperature gradient finalT  (cell: G29) 

• the change in temperature during the temperature segment (cell: G31) 

• the gradient time of the temperature segment 3tG  (cell: G32) 

• a cell where the temperature-gradient steepness parameter Tb  will be calculated 

according to equation A 3-2 (cell: C28) 

• a cell for the fractional migration 3segmentr  of the analyte during the third temperature 

segment (cell: C29) 

• a cell containing the value of TS  (cell: C5)  

• a cell containing the value of 0k  corresponding to the value of the retention factor 

calculated after the second temperature segment (cell: C25)  

• a cell where the retention time will be calculated according to equation A 3-4  

(cell: C31) 

• a cell where the change of the retention factor during the third segment will be 

calculated according to equation A 3-5 (cells C32 and C33) 

Figure A 3-6 depicts a screenshot of the spreadsheet calculator which has been employed to 

calculate the retention time of sulfamethazine for the third temperature segment. 
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Figure A 3-6: Spreadsheet calculator, sheet displaying the equations that are needed to 
calculate the retention time and fractional migration of sulfamethazine for the third 
temperature segment. 
 

The calculation starts again with the assumption that sulfamethazine will elute during the 

third segment of the gradient by setting the value of the fractional migration 3segmentr  to 

0.7585  

( 1 21 0.7585segment segmentr r− − = ), yielding a retention time of 6.00 min (cell: C31) for 

sulfamethazine for the third temperature segment.  

Also in this case, the retention time of sulfamethazine is higher than the temperature-gradient 

time ( 3segmenttG ) of the segment which was set to 5.62 min. Therefore, sulfamethazine does not 

elute during the third temperature segment and the value of the fractional migration has to be 

changed yielding a retention time of 5.62 min for sulfamethazine. Figure A 3-7 represents the 

required equations and Solver Parameters. The “Target Cell” corresponds with the retention 

time of sulfamethazine for the third segment (cell: C31) and should be set “Equal To” a 

“Value of” 5.62 “By Changing Cell” that corresponds with the fractional migration 

(cell: C29) of sulfamethazine during the third segment. Following, the solver function will 
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search for a value of the fractional migration ( 3segmentr ) yielding a retention time for 

sulfamethazine of 5.62 min. A value of approximately 0.6746 gives the desired retention time 

corresponding to a migration distance of sulfamethazine of 50.6 mm (cell: C30) of the total 

column length for the third temperature segment. 

 

Figure A 3-7: Spreadsheet calculator, sheet displaying the equations and Solver Parameters 
that are needed to calculate the fractional migration of sulfamethazine for the third 
temperature segment. 
 

Finally, the value of the retention factor ( 0k ) of sulfamethazine corresponding to the final 

temperature of the third segment which is equal to the start temperature of the fourth 

temperature segment has to be calculated according to equation A 3-5 and yields a value of 

5.147 (cell: C33). 
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Appendix 3-2.5. Calculation of the Retention Time of Sulfamethazine for the Fourth

 Temperature Segment of the Separation shown in Figure 3-4 a 

The fourth segment of the temperature-gradient method shown in Figure 3-4 a is an 

isothermal/isocratic hold. Therefore, the retention time of sulfamethazine has to be calculated 

according to equation A 3-6 instead of equation A 3-4. 

First, a number of experimental/theoretical data has to be determined and specified in the 

spreadsheet calculator (Figure A 3-8). 

• the column dead time 0t  (cell: G35) 

• the start temperature of the temperature gradient startT  (cell: G36) 

• the final temperature of the temperature gradient finalT  (cell: G37) 

• the change in temperature during the temperature segment (cell: G39) 

• the gradient time of the temperature segment 4tG  (cell: G40) 

• a cell where the temperature-gradient steepness parameter Tb  will be calculated 

according to equation A 3-2 (cell: C36) 

• a cell for the fractional migration 4segmentr  of the analyte during the second temperature 

segment (cell: C37) 

• a cell containing the value of TS  (cell: C5)  

• a cell containing the value of 0k  corresponding to the value of the retention factor 

calculated after the third temperature segment (cell: C33) 

• a cell where the retention time will be calculated according to equation A 3-6  

(cell: C39) 

• a cell where the change of the retention factor during the fourth segment will be 

calculated according to equation A 3-5 (cells C40 and C41) 

Figure A 3-8 represents a screenshot containing the equations which are needed to calculate 

the retention time and fractional migration of sulfamethazine during the fourth segment of the 

temperature-gradient method. 
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Figure A 3-8: Spreadsheet calculator, sheet displaying the equations that are needed to 
calculate the retention time and fractional migration of sulfamethazine for the fourth 
temperature segment. 
 

The calculation starts by setting the value of the fractional migration 4segmentr  of 

sulfamethazine to 0.08385 ( 1 2 31 0.08385segment segment segmentr r r− − − = ). This value yields a 

retention time of 0.397 min (cell: C39) for sulfamethazine for the fourth segment. As can be 

seen, this value is smaller than the temperature-gradient time of 1 min (cell: G40) and points 

out that sulfamethazine elutes during the fourth segment from the column. 

Finally, the retention times of sulfamethazine during each segment sum up to 12.01 min 

(cell: C44), which represents the total retention of sulfamethazine. 
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Appendix 3-3. Calculation of the Retention Time of Sulfamethazine for the

 Separation shown in Figure 3-4 b 

To calculate the retention times of selected sulfonamides for the separation shown in  

Figure 3-4 b, values of the retention factors corresponding to the selected start temperature of 

the gradient of 100 °C were required. Therefore, a linear regression was performed using 

isothermal/isocratic data at 60 °C and 180 °C. The experimental data are represented in  

Table A 3-2.  
 

Table A 3-2: Overview of experimentally obtained isothermal/isocratic retention times of 
selected sulfonamides at 60 °C and 180 °C. 

analyte experimental retention time 
[min] at 60 °C (333.16 K) 

experimental retention time [min] 
at 180 °C (453.15 K) 

uracil 1.090 0.771 
sulfadiazine 8.906 1.299 
sulfathiazole 12.740 1.195 
sulfamerazine 21.921 1.922 
sulfamethoxazole 51.120 2.087 
sulfamethazine 54.608 3.157 
 

On the basis of these data, values of the retention factor ( 0k ) corresponding to 100 °C were 

calculated for each sulfonamide and have been employed as start values for the prediction of 

the retention times of these compounds for the method shown in Figure 3-4 b. 

Afterwards, the retention time of each sulfonamide was calculated using the same approach as 

described in Appendix 3-2. 
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List of Symbols of Appendix for Chapter 3 

Tb  temperature-gradient steepness parameter 

0k  retention factor of an analyte i  at the start of the temperature gradient 

r  fractional migration of an analyte i  during a segment of the temperature-gradient 

 method 

TS  analyte specific constant of the LES retention model 

T∆  difference between start and final temperature of the temperature gradient 

0t  column dead time 

finalT  final temperature of the temperature gradient 

tG  temperature-gradient time 

Rt  retention time of an analyte i  

startT  start temperature of the temperature gradient 
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Chapter 4. A General Strategy for Performing Temperature 

Programming in High Performance Liquid 

Chromatography – Further Improvements in the 

Accuracy of Retention Time Predictions of 

Segmented Temperature Gradients* 

 

    

*Submitted to Journal of Chromatography A, in revision 
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4.1 Introduction 
The use of elevated temperature in high-performance liquid chromatography (HPLC) is not a 

new topic of investigation [1] and it is well documented that increasing the temperature 

results in a change of the physicochemical properties of water and binary solvent mixtures  

[2-4]. However, the parameter temperature enables some special hyphenation techniques [5-

12]. Most of these techniques use the decrease in the static permittivity of water at elevated 

temperatures [4]. In other words, the higher the temperature of water, the lower the polarity of 

a water mobile phase. Hence, under certain conditions temperature gradients can be employed 

instead of solvent gradients, which has been shown elsewhere [13-16]. Consequently, the user 

is faced with the problem to develop a method where temperature gradients are employed 

instead of solvent gradients.  

For method development in solvent gradient elution, several software packages like DryLab 

[17], ChromSwordAuto [18], Osiris [19] or ACD/LC & GC Simulator [20] are commercially 

available to assist the user and to reduce the necessary experimental efforts. Unfortunately, 

these software packages do not permit the simulation of the retention time of an analyte 

depending on a temperature gradient due to the lack of a suitable retention model. In other 

words, most attempts to achieve good separations in temperature-programming mode are 

governed by trial and error [21-24]. This problem was first recognized by Nikitas and Pappa-

Louisi. They developed retention models which permit prediction of retention times when 

solvent composition and temperature are changed simultaneously [25,26]. Up to now, their 

models were tested using only linear temperature gradients with moderate slopes from 

2 °C min-1 up to 10 °C min-1 in a temperature interval from 15 °C up to 75 °C ( T∆  = 60 °C ). 

Recently, Cela and co-workers have described computer-assisted method development in high 

temperature liquid chromatography based on an evolutionary algorithm [27]. The developed 

approach also permits dual mode predictions of retention times when solvent composition and 

temperature are changed simultaneously. During their study a temperature interval from 40 °C 

to 180 °C was investigated using temperature-gradient slopes up to 20 °C min-1. Moreover, 

they noted that their software package PREGA has incorporated this methodology and can be 

downloaded for free [27].  

In a recent study [28] we could show that the linear elution strength (LES) model from 

temperature-programmed gas chromatography (GC) can be employed for retention time 

predictions of linear temperature gradients in temperature-programmed liquid 

chromatography. The high accuracy of retention time predictions was shown for selected 
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steroids and polycyclic aromatic hydrocarbons (PAHs) in a temperature interval from 50 °C 

up to 180 °C when temperature gradients with slopes up to 30 °C min-1 were applied. In a 

further study [29] the LES model was extended in order to predict more complex segmented 

temperature gradients in a similar temperature interval (60 °C to 180 °C). It was concluded 

that the accuracy of retention time predictions was lower if the start temperature of the 

predicted gradient was not equal to the start temperature of the measurements which have 

been employed during data fitting.  

Moreover, systematic method development in liquid chromatography should be performed 

using as few input measurements as possible. In order to reduce the experimental work it 

would be advantageous if isothermal as well as temperature-gradient simulations can be 

performed based only on temperature-gradient data. Data acquisition using temperature-

gradient measurements is less time consuming when compared to isothermal data acquisition. 

Furthermore, samples containing analytes with different polarities can be measured within the 

same chromatographic run in temperature-gradient mode. If isothermal data are required, long 

analysis times are expected for the less polar compounds of the sample mixture at low 

temperature. 

Therefore, this study investigated the ability to predict segmented temperature-gradients based 

on only temperature-gradient input measurements. Concurrently it will be explored whether 

the accuracy of retention time predictions of complex segmented temperature-gradients can be 

improved using a new experimental design as well as a temperature dependent calculation of 

the parameter TS  of the LES model. In addition, the applicability of systematic temperature-

programming method development by means of the LES model will be investigated using as 

few input measurements as possible. For this reason, several methods will be developed for 

the separation of selected food additives using a water mobile phase. Finally, a schedule of 

recommendations will be given to assist the user during systematic temperature-programming 

method development in high-temperature liquid chromatography. 
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4.2 Experimental Section 

4.2.1 Chemicals 

High-purity deionized water was prepared by an Elix 10-Milli-Q Plus water purification 

system (Millipore, Eschborn, Germany). Acetonitrile (Optigrade) was purchased from LGC 

Standards (Wesel, Germany). In this study a mixture of six food additives was employed 

including theobromine, theophylline, catechine, caffeine, aspartame, rutin, and uracil. All 

chemicals employed in this study except for the solvents were purchased from Sigma-Aldrich 

(Seelze, Germany) and were of p. a. grade. Stock solutions were prepared by dissolving an 

equivalent amount of the analytes in water to obtain a concentration of  

1.0 mg mL-1 of theophylline, catechine and aspartame. Uracil, theobromine, caffeine, and 

rutin were dissolved in a mixture of 50/50 (v/v) water/acetonitrile at a concentration of  

0.5 mg mL-1. 0.1% formic acid was added to adjust the pH of the stock solutions to 2.7. 

4.2.2 HPLC System 

A Shimadzu HPLC system (Shimadzu, Duisburg, Germany) was used consisting of two  

LC-10ADVP pumps, a DGU-14 A degasser, an SIL-10ADVP autosampler, an SPD-M10AVP 

diode array detector (DAD), and an SCL-10AVP controller. A 500 psi backpressure regulator 

(GammaAnalysenTechnik, Bremerhaven, Germany) was connected behind the DAD to keep 

the mobile phase in the liquid state. For data acquisition and analysis, Shimadzu LCsolution 

(version 1.21 SP 1) was used. All measurements in the present study were carried out on a 

Waters XBridge C18 (50 × 3.0 mm, 3.5 µm) column at a flow rate of 0.5 mL min-1 using a 

water mobile phase with 0.1% formic acid. This column was chosen because of its very good 

temperature and pH stability [30]. UV detection was performed at a wavelength of 200 nm. 
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4.2.3 Heating System 

To heat the mobile and stationary phase a commercially available SIM HT-HPLC 200 high-

temperature column oven (SIM - Scientific Instruments Manufacturer, Oberhausen, Germany) 

was used [31,32]. The heating system was designed for high-temperature liquid 

chromatography and consists of three modules: the eluent preheating unit, the column heating 

unit, and the eluent cooling unit. The heat transfer is achieved by block heating which means 

that the capillaries and column are tightly enclosed by aluminium blocks. The three heating 

units can be controlled independently, which guarantees that the temperature of the mobile 

phase entering the column and the temperature of the stationary phase can be exactly 

matched. If a temperature gradient is applied, the temperature of the preheating unit and the 

temperature of the column are increased simultaneously. For all measurements performed in 

this study, the temperature setting of the preheating unit and the column were identical. 

4.2.4 Isothermal/Isocratic Measurements 

For the isothermal measurements under isocratic conditions, three test mixtures were 

employed. The first mixture was composed of theobromine, theophylline and aspartame. The 

second mixture included catechine and caffeine. Rutin was measured separately. The 

concentration of each food additive was set to 0.1 mg mL-1 in each mixture and uracil was 

added to yield a final concentration of 0.01 mg mL-1. The investigated temperature interval 

ranged from 40 °C to 120 °C with increments of 10 °C, except for rutin where a temperature 

interval from 90 °C to 120 °C was investigated. 

4.2.5 Temperature-Gradient Measurements 

For these measurements a mixture of all food additives was prepared by adding an equivalent 

amount of each stock solution to obtain a concentration of 0.1 mg mL-1 of each analyte in the 

mixture. Uracil was added to obtain a final concentration of 0.01 mg mL-1. The start 

temperature of the temperature gradients ranged from 40 °C to 80 °C with increments of 

10 °C. The temperature difference T∆  ( final startT T T∆ = − ) between start and final 

temperature was set to 100 °C and gradient slopes of 2, 4, 6 and 8 °C min-1 were applied. 

Table 4-1 summarizes the temperature-gradient measurements which have been employed as 

input data. 
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Table 4-1: Schedule of the experimental temperature gradients which were employed as input 
runs. 

run number gradient slope 
[°C min-1] 

start temperature 
[°C] 

final temperature 
[°C] 

1 2 

40 140 
2 4 
3 6 
4 8 
5 2 

50 150 
6 4 
7 6 
8 8 
9 2 

60 160 
10 4 
11 6 
12 8 
13 2 

70 170 
14 4 
15 6 
16 8 
17 2 

80 180 
18 4 
19 6 
20 8 
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4.3 Theory 
In a previous study [28] we have shown that the LES model could successfully be adapted 

from temperature-programmed gas chromatography to temperature-programmed liquid 

chromatography. Furthermore, it was shown that it was not necessary to extend the LES 

model to consider a temperature-dependent delay time when a high-temperature column oven 

based on block heating was employed. Using the LES model the retention time Rt  of an 

analyte can be predicted as a function of experimental conditions using equations 4-1 and 4-2 

[33,34].  

( )2.30
0 0ln 1

2.3
Tb

R
T

tt e k k
b

 = + −          (4-1) 

with 0 T
T

t S Tb
tG
∆

=           (4-2) 

where 0t  is the column dead time and 0k  is the retention factor of the solute at the start of the 

temperature gradient that should theoretically equal the retention factor obtained in isothermal 

conditions. The temperature gradient-steepness parameter Tb  consists of the solute constant 

TS , the temperature range T∆  ( final startT T T∆ = − ) and the temperature gradient time tG . For 

the prediction of retention times, two experimental temperature-gradient runs are required. 

These runs should differ in temperature-gradient slopes by a factor of at least three whereas 

all other experimental conditions are kept constant [33,35]. Moreover, for reliable predictions 

the analytes should elute within the temperature-gradient window. On the basis of two 

temperature-gradient measurements, values of TS  and 0k  for each analyte are derived by 

numerical solution of equations 4-1 and 4-2. This procedure is very similar to numerical 

solutions of the LSS relationship [36-38]. 

In order to predict retention times for segmented temperature gradients, an equation is 

required which describes the fractional migration r  of the solute across the column during a 

given temperature segment. In other words, r  is the distance in longitudinal direction which 

an analyte moves through the column during a temperature segment. In this case, a similar 

derivation to solvent gradient elution yields equation 4-3 [33,39,40]. 
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Furthermore, in the case where a temperature-gradient method consists of an 

isothermal/isocratic hold, equation 4-4 can be employed to calculate the retention time of an 

analyte during this segment. 

( )0 0 1Rt rt k= +           (4-4) 

The sum of the fractional migration r  of an analyte across the column during each 

temperature segment can be written as ( 1 2 ... 1nr r r+ + = ). Moreover, equation 4-5 describes the 

change of the retention factor of an analyte during each temperature segment and is required 

to calculate the retention factor rk of the analyte at the end of a temperature segment. This 

value has then to be used as initial value for the next temperature segment and employed 

instead of 0k  in equation 4-3.  

0
0

log log T R
r

b tk k
t

= −           (4-5)  

Finally, the sum of the calculated retention times of an analyte for all temperature segments 

represents the total retention time of a multi-step temperature gradient. An example of how a 

spreadsheet calculator can be used to calculate the total retention time of an analyte depending 

on segmented temperature gradients is given in the Appendix for Chapter 4. 

Recently, it was shown that a plot of ln k  vs T  can be employed for isothermal retention time 

predictions [29], and a combination of isothermal and temperature-gradient input 

measurements has been employed to predict retention times of temperature gradients with 

different start temperatures. Nevertheless, the accuracy of retention time predictions based on 

two temperature gradients and two isothermal runs was inferior to the accuracy of predictions 

where the start temperature of the gradient was equal to the start temperature of the input runs. 

It was concluded that both LES parameters 0k  and TS  should be calculated temperature 

dependent [29]. For this approach it is necessary to change the experimental design of the 

input measurements. To that end, four temperature-gradient measurements were carried out, 

with two runs at a low start temperature of, e.g., 40 °C, and two runs at a higher temperature 

of, e.g., 80 °C, keeping all other experimental conditions constant ( ,T tG∆ ). Afterwards, the 

LES parameters 0k  and TS  were calculated for the lower and the higher start temperature. To 

calculate the parameter TS  depending on temperature a linear regression of a plot of TS  vs T  

has been employed for interpolation. Similar to the parameter TS  the parameter 0k  can also 
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be calculated depending on temperature by means of linear regression of an 0ln k  vs T  plot 

[29]. 
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4.4 Results and Discussion 

4.4.1 Isothermal Predictions based on Isothermal and Temperature-Gradient 
Input Data 

In the present work, the experimental design as presented in a previous study [29] was 

changed to investigate the ability to express the influence of temperature on the retention 

factor of a solute based on four temperature-gradient runs. To test this approach a data set of 

ten temperature-gradient measurements was employed, where the start temperature of the 

gradients ranged from 40 °C to 80 °C. The gradient slopes were set to 2 °C min-1 and 

6 °C min-1 at each start temperature (runs 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19 of Table 4-1). On 

the basis of these runs values of 0k  for each analyte were calculated depending on the start 

temperature by means of the approach described in the theoretical section  

(equations 4-1 and 4-2). Afterwards, the calculated values of 0k  were employed to represent a 

plot of 0ln k  vs T  which is shown in Figure 4-1 a. The corresponding plot of ln k  vs T  based 

on isothermal measurements is shown in Figure 4-1 b. 
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Figure 4-1: Comparison of different plots of ln k  vs T . (a) calculated values of 0ln k  based 
on temperature gradients, (b) calculated values of ln k  based on isothermal measurements. 
Chromatographic conditions: stationary phase: Waters XBridge C18 (50 × 3.0 mm, 3.5 µm); 
mobile phase: water + 0.1% formic acid; injection volume: 4 µL, see also experimental 
sections 4.2.4 and 4.2.5. 
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As can be seen, both plots look very similar and show a strict linear relationship between the 

natural logarithm of the retention factor versus temperature for each food additive. This is 

confirmed by the data given in Table 4-2 where characteristics of a linear regression for both 

plots are represented. The values for the slopes and intercepts of the linear equations were 

comparable for all plots. Moreover, the linear behavior was underlined by the coefficients of 

correlation (R²) ranging between 0.9973 and 0.9999, regardless of performing the regression 

with isothermal or temperature-gradient input data. 
 

Table 4-2: Overview of characteristics of linear regression of the plots shown in Figure 4-1. 

figure parameter theobromine theophylline catechine caffeine aspartame rutin 

4-1 a 

slope [× 10-2] −2.75 −3.02 −4.08 −3.21 −2.94 −4.80 
intercept 
[× 101] -1.09 -1.24 -1.62 -1.39 -1.32 -2.18 

R² 0.9994 0.9997 0.9998 0.9999 0.9993 0.9989 

4-1 b 

slope [× 10-2] −2.82 −3.03 −4.24 −3.20 −2.61 --- 
intercept 
[× 101] -1.06 -1.19 -1.62 -1.34 -1.16 --- 

R² 0.9973 0.9981 0.9989 0.9991 0.9998 --- 

 

Moreover, Figure 4-1 a underlines that an advantage of isothermal retention time predictions 

based on temperature gradients is the ability to predict isothermal retention times of rutin at a 

temperature below 90 °C. Isothermal data acquisition for rutin at a temperature below 90 °C is 

not reasonable, because very long analysis times will be expected. For example, if the 

measurements are carried out at a temperature of 40 °C rutin needs approximately six hours to 

elute from the column. Furthermore, the high linear relationship of the plots of 0ln k  vs T  as 

well as ln k  vs T   allows the prediction of isothermal retention times using only experimental 

data at two temperatures. In order to compare the accuracy of isothermal retention time 

predictions based on temperature-gradient as well as isothermal measurements, Table 4-3 

reveals a comparison of relative errors of interpolated (50 °C - 70 °C) and extrapolated  

(90 °C - 120 °C) isothermal retention times of selected food additives. 
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Table 4-3: Comparison of relative errors of isothermal retention time predictions based on 
isothermal and on temperature-gradient measurements. Roman character corresponds to 
isothermal measurements. Italic character corresponds to temperature-gradient measurements. 

predicted 
temperature 

[°C] 

theobromine 
[%] 

theophylline 
[%] 

catechine 
[%] 

caffeine 
[%] 

aspartame 
[%] 

50 2.0 1.3 1.9 0.3 4.1 5.4 2.6 4.5 1.8 3.3 
60 2.6 2.3 2.7 1.2 5.6 1.3 3.5 1.7 1.6 1.7 
70 2.1 2.2 2.3 1.6 4.0 0.2 2.4 0.7 1.3 0.2 
90 2.6 1.9 2.8 2.2 5.2 4.4 3.4 2.7 2.1 0.4 
100 5.5 4.7 6.0 4.9 10.5 8.1 7.5 5.2 3.0 0.4 
110 9.5 8.5 10.2 8.7 16.4 12.9 12.3 8.6 4.9 0.1 
120 12.9 11.9 14.1 12.4 21.4 17.5 17.3 12.8 6.4 0.1 

 

In order to compare relative errors, in a first step isothermal retention time calculations were 

performed by linear regression using isothermal data at 40 °C and 80 °C. For the retention 

time calculations based on temperature gradients, two gradient runs within a temperature 

interval from 40 °C to 140 °C with gradient slopes of 2 °C min-1 and 6 °C min-1 (runs 1 and 3 

of Table 4-1) as well as two runs within a temperature interval from 80 °C to 180 °C with the 

same slopes (runs 17 and 19 of Table 4-1) were employed. Afterwards, values of 0k  were 

calculated corresponding to the start temperature of the basic measurements (40 °C and 

80 °C). Subsequently a linear regression of 0ln k  vs T  was performed in order to calculate 

isothermal retention times based on temperature-gradient data. Finally, relative errors were 

calculated by a comparison of predicted and experimental retention times of the food 

additives (Table 4-3). 

It can be seen that the relative errors of interpolated isothermal retention times based on 

isothermal data and temperature gradients are very similar. An average relative error of 2.7% 

and 1.9% was calculated for isothermal and temperature-gradient input data, respectively. In 

the case of extrapolations to higher temperatures, e.g., 120 °C, larger differences between 

predicted and experimental retention times are observed. Regarding our measurements it can 

be pointed out that extrapolations based on both isothermal and temperature-gradient data, 

should not exceed a temperature of 100 °C corresponding to an extrapolation limit of 25%. 

Otherwise, major relative errors up to 21% of predicted retention times would be observed. 

The results shown in Table 4-3 underline that isothermal predictions based on isothermal 

input data should only be applied for a small temperature interval of e.g., T∆  = 40 °C when 
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using only two temperatures for data fitting. To predict isothermal retention times using a 

larger temperature interval of e.g., T∆  = 100 °C, at least data at three temperatures should be 

employed to describe the influence of temperature on retention. In this context, isothermal 

retention time predictions based on temperature-gradient data can be a helpful and time saving 

tool, in order to get information whether an isothermal separation of selected analytes is 

possible. In addition, this kind of predictions can be employed for the design of experiments 

of isothermal measurements. A detailed discussion regarding an isothermal separation of 

selected food additives is given in the Appendix for Chapter 4. 

4.4.2 Temperature-Gradient Predictions based on Gradient Input Data 

The main aim of our efforts regarding isothermal retention time predictions based on 

temperature-gradient measurements was to investigate the suitability of four temperature-

gradient runs to predict retention times for other temperature gradients with a different start 

temperature. The idea was to use two temperature gradients with a start temperature of 40 °C 

and two runs with a start temperature of 80 °C to predict other temperature gradients with a 

start temperature between 40 °C and 80 °C. Concurrently, it was investigated whether the 

accuracy of these predictions could be improved by temperature dependent fitting of the LES 

parameter TS . In other words, for the temperature dependent calculation of TS  the same 

temperature-gradient data set was used that has been employed for the temperature dependent 

calculation of 0k  which was described in section 4.1 (runs 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19 

of Table 4-1). On the basis of these measurements, values of TS  for each analyte were 

calculated depending on the start temperature by means of the approach described in the 

theoretical section (equations 4-1 and 4-2). Afterwards, the calculated values of TS  were 

employed to plot TS  vs T  which is shown in Figure 4-2. 
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Figure 4-2: Plot of TS  vs T  of six food additives. Calculated values of TS  based on 
experimental temperature-gradient measurements. For chromatographic conditions see 
section 4.2.5. 

Figure 4-2 points out that the parameter TS  decreases with increasing start temperature of the 

gradients which have been employed during data fitting. Moreover, the variation of TS  

depending on the start temperature can be described by a linear relationship. This can also be 

seen in Table 4-4 where characteristics of the linear regression of the TS  vs T   plot are 

represented for each food additive. 
 

Table 4-4: Overview of characteristics of linear regression of the TS  vs T  plot for each food 
additive. Data shown here correspond to Figure 4-2. 

parameter theobromine theophylline catechine caffeine aspartame rutin 
slope [× 10-5] -6.55 -8.27 -14.37 -7.00 -3.89 -3.72 
intercept [× 10-2] -2.66 -3.40 -5.78 -3.29 -2.25 -3.06 
R2 0.9720 0.9960 0.9864 0.9899 0.9462 0.9070 

 

The coefficients of correlation (R²) for the food additives are satisfactory except for rutin 

where a less linear relationship between TS  and T  was observed. Nevertheless, based on the 

data given in Table 4-4 it is acceptable to calculate the parameter TS  depending on 
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temperature when using only experimental data at two start temperatures, in order to increase 

the accuracy of retention time predictions. 

To test this approach, two temperature gradient runs with a start temperature of 40 °C and two 

runs with a start temperature of 80 °C (runs 1, 3, 17, and 19 of Table 4-1) were employed to 

calculate TS  as well as 0k  depending on temperature by means of linear regression of the 

TS  vs T  and the 0ln k  vs T  plot. Afterwards, the retention times of selected food additives 

were predicted for a set of twelve temperature gradients where different start temperatures 

from 50 °C to 70 °C and different gradient slopes from 2 °C min-1 up to 8 °C min-1 were 

applied. Predicted and experimental data are compared in Table 4-5. In the case where the 

retention times of the food additives were not calculated based on temperature dependent 

fitting of TS , the required values of TS  were taken from data fitting at a temperature of 40 °C. 

The relative errors of these predictions are also shown in Table 4-5. 
 

Table 4-5: Comparison of relative errors of predicted retention times of food additives based 
on temperature gradient measurements. Roman character corresponds to temperature 
dependent fit of 0k  and TS . Italic character indicates that only the parameter 0k  was fitted 
temperature dependent. 

temperature 
range [°C] 

slope 
[°C min-1] 

theobromine 
[%] 

theophylline 
[%] 

catechine 
[%] 

caffeine 
[%] 

aspartame 
[%] 

rutin 
[%] 

50 - 150 

2 1.0 0.5 0.6 0.3 0.0 1.9 0.4 1.1 1.4 0.4 0.0 1.4 
4 0.5 0.3 0.4 1.1 0.9 2.1 0.9 1.4 0.8 0.7 0.4 1.2 
6 0.8 0.4 0.5 1.6 0.9 2.9 0.7 2.0 0.2 1.5 0.5 2.1 
8 0.7 0.8 0.2 2.3 0.4 3.9 0.0 2.9 0.4 2.3 1.6 3.2 

60 - 160 

2 1.8 1.1 1.4 0.0 1.4 1.5 1.1 1.4 0.7 1.0 0.8 1.9 
4 1.8 0.5 1.3 1.2 2.1 2.7 1.8 2.0 0.6 1.9 1.3 1.7 
6 1.3 0.6 1.1 2.3 1.9 4.3 1.3 3.3 0.3 2.8 0.1 3.0 
8 1.3 1.1 0.7 3.4 1.3 5.9 0.6 4.6 0.3 3.7 1.2 4.3 

70 - 170 

2 1.4 0.5 1.4 0.2 1.4 1.7 1.0 1.9 0.2 1.8 0.4 3.3 
4 1.5 0.1 1.2 1.8 1.6 3.8 1.4 3.3 0.5 2.7 1.3 2.9 
6 1.2 1.1 1.1 3.0 1.2 6.0 1.2 4.8 0.3 3.8 0.2 4.2 
8 0.5 2.4 0.1 5.0 0.3 8.2 0.3 6.5 0.5 5.0 1.4 5.8 

average error [%] 1.2 0.8 0.8 1.9 1.1 3.7 0.9 2.9 0.5 2.3 0.8 2.9 
 

When the start temperature of the temperature gradient was increased from 40 °C up to 50 °C, 

it was not necessary to calculate TS  depending on temperature, because a maximal relative 

error of predicted retention times of 3.9% was obtained. When the start temperature was 
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increased further to 60 °C, a larger maximal relative error of 5.9% of predicted retention times 

of the food additives was calculated. Considering the average relative error of predicted 

retention times of all food additives, it can be concluded that a temperature dependent 

calculation of both parameters TS  and 0k  results in an average relative error of 0.9% whereas, 

if only the parameter 0k was calculated depending on temperature, an average relative error of 

2.4% was observed. In other words, if both parameters are calculated depending on 

temperature the accuracy of predicted retention times can be increased to around 1.5%. 

Hence, TS  as well as 0k  should be calculated temperature-dependent in order to obtain more 

reliable retention time predictions.  

Because of the results shown in Figure 4-1 a and Table 4-5, it is possible to use four 

temperature-gradient runs during systematic method development in LC instead of two 

temperature-gradient runs and two isothermal measurements which were employed during a 

previous study [29]. 

4.4.3 Systematic Temperature-Programming Method Development 

The new experimental design has been employed to perform systematic temperature-

programming method development of selected food additives by high-temperature liquid 

chromatography using a water mobile phase. As basic input data the following experimental 

temperature-gradient measurements were employed: 

• 40 °C to 140 °C with a slope of 2 °C min-1 (run 1 of Table 4-1) 

• 40 °C to 140 °C with a slope of 6 °C min-1 (run 3 of Table 4-1) 

• 80 °C to 180 °C with a slope of 2 °C min-1 (run 17 of Table 4-1) 

• 80 °C to 180 °C with a slope of 6 °C min-1 (run 19 of Table 4-1) 

On the basis of these runs, several methods were developed with the aim to achieve a baseline 

separation of selected food additives. In other words, the critical resolution (RS) should be 

higher than 1.5. In this context it has to be considered that method development is still based 

on trial and error and an optimization algorithm will be required. However, the development 

of such an algorithm is beyond the scope of this study. Here we would like to emphasize that 

retention time predictions can be performed using four basic temperature-gradient 

measurements. This will be discussed by the temperature-gradient methods shown in  

Figure 4-3, where the start temperature for the gradients ranged from 40 °C to 70 °C. 
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Figure 4-3: Chromatograms of the separation of six food additives by temperature-gradient 
elution. Different start temperatures of the gradient were employed: (a) = 40 °C, (b) = 50 °C, 
(c) = 60 °C, (d) = 70 °C. Chromatographic conditions: Waters XBridge C18 (50 × 3.0 mm, 
3.5 µm); mobile phase: water + 0.1% formic acid; injection volume: a) 2 µL, b, c, d) 1µL; 
temperature gradient: see Figure 4-3. Analytes: 1) uracil, 2) theobromine, 3) theophylline,  
4) catechine, 5) caffeine, 6) aspartame, 7) rutin. 
 

Moreover, in Table 4-6 predicted and experimental retention times, relative errors and 

average relative errors are compared. In the case of a simple linear temperature gradient 

(Figure 4-3 b) the retention times can be predicted precisely, because a maximal relative error 

of 4.3% was observed and an average relative error of 2.6% was calculated. In the case of 

more complex segmented temperature gradients which are shown in Figure 4-3 a, c and d it 

can be concluded that the accuracy of predicted retention times decreases with increasing 

number of temperature segments during the separation. For example, theophylline and 

catechine elute in every separation shown in Figure 4-3 during the first segment of the 

temperature gradient and the relative error ranges between 1.0% and 3.5%. In contrast, rutin 
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usually elutes during the third (Figure 4-3 a and d) or fourth (Figure 4-3 c) segment of the 

temperature gradient and shows a slightly larger relative error between 3.5% and 5.6%. In 

comparison to that, if a simple linear temperature gradient is considered (Figure 4-3 b) a 

significantly lower relative error of predicted retention time of 1.1% is observed for rutin. 
 

Table 4-6: Comparison of predicted retention times (pred. RT) calculated by LES model and 
experimental retention times (expt. RT) of selected food additives. Data shown here 
correspond to Figure 4-3. 

figure analytes seg. a peak 
width 
[min]b 

expt. 
RT 

[min] 

pred. 
RT 

[min] 

difference 
[min] 

relative 
error 
[%] 

average 
rel. error 

[%] 

4-3 a 

theobromine 1 0.29 3.62 3.73 0.12 3.2 

2.8 

theophylline 1 0.30 5.01 5.07 0.06 1.2 
catechine 1 0.22 5.81 5.70 0.11 1.9 
caffeine 2 0.34 7.56 7.67 0.11 1.4 
aspartame 2 0.44 8.07 8.50 0.43 5.3 
rutin 3 0.19 13.35 12.88 0.47 3.5 

4-3 b 

theobromine 1 0.28 3.10 3.23 0.13 4.3 

2.6 

theophylline 1 0.32 4.47 4.61 0.14 3.1 
catechine 1 0.25 5.27 5.33 0.06 1.2 
caffeine 1 0.39 7.30 7.48 0.19 2.5 
aspartame 1 0.46 7.91 8.18 0.27 3.5 
rutin 1 0.25 13.39 13.24 0.15 1.1 

4-3 c 

theobromine 1 0.27 2.66 2.75 0.09 3.3 

2.7 

theophylline 1 0.35 3.98 4.08 0.10 2.6 
catechine 1 0.29 4.72 4.78 0.06 1.2 
caffeine 2 0.42 7.16 7.07 0.09 1.2 
aspartame 2 0.42 7.75 7.59 0.16 2.1 
rutin 4 0.15 10.28 9.70 0.58 5.6 

4-3 d 

theobromine 1 0.23 2.16 2.25 0.09 4.2 

3.0 

theophylline 1 0.30 3.22 3.33 0.11 3.5 
catechine 1 0.27 3.69 3.73 0.04 1.0 
caffeine 2 0.33 5.92 5.81 0.11 1.9 
aspartame 2 0.31 6.41 6.28 0.13 2.0 
rutin 3 0.17 8.97 8.50 0.46 5.2 

a The elution of the analyte was carried out during the denoted temperature segment. 
b The peak width was calculated at 10% peak height. 
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Regarding the aim to develop a temperature-gradient method which separates the food 

additives with a critical resolution higher than 1.5, only two methods were found to be 

suitable. At a start temperature of the gradient of 50 °C (Figure 4-3 b) the food additives can 

be separated within approximately 14 minutes with a critical resolution between peak pair 5/6 

of 1.51. If the start temperature of the gradient was increased to 70 °C and a multi-step 

temperature gradient was applied (Figure 4-3 d), the analytes were separated within 9 minutes 

with a critical resolution between peaks 5/6 of 1.61. The critical resolution between peaks 5/6 

of the methods shown in Figure 4-3 a and c were 1.36 and 1.49, respectively. In order to 

improve the critical resolution further, it would be feasible to double the column length. In 

this case the resolution of the method shown in Figure 4-3 d should increase from 1.61 to 

2.27, but it has to be considered that the analysis time would also be doubled. 

4.4.4 Repeatability and Robustness of a Temperature-Gradient Method 

A prerequisite for a successful implementation of a temperature-gradient method in routine 

laboratory practice is the repeatability as well as robustness of an HPLC method. In order to 

investigate the repeatability and robustness at very high temperature as well as using moderate 

and high temperature-gradient slopes of the column oven, another method was chosen than 

suggested in section 4.4.3 (Figure 4-3 d). The start temperature and the final temperature of 

the method were set to 50 °C and 180 °C, respectively. The temperature-gradient method 

consists of three segments, two gradients with slopes of 7.5 °C min-1 and 31.9 °C min-1 as 

well as an isothermal hold at 180 °C. 

Figure 4-4 shows an overlay of nine consecutive chromatograms of the separation of six food 

additives. 
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Figure 4-4: Overlay of nine chromatograms of the separation of six food additives and uracil 
by temperature-gradient elution. Chromatographic conditions: Waters XBridge C18 
(50 × 3.0 mm, 3.5 µm); mobile phase: water + 0.1% formic acid; flow rate: 0.5 mL min-1; 
injection volume: 1 µL; temperature gradient: 0 min at 50 °C; 10.37 min at 128 °C; 12.00 at 
180 °C; 14.00 min at 180 °C. Analytes: 1) uracil, 2) theobromine, 3) theophylline, 
4) catechine, 5) caffeine, 6) aspartame, 7) rutin. 
 

As can be seen, there are only marginal differences between the nine chromatograms which is 

also underlined by the statistical data given in Table 4-7. 
 

Table 4-7: Overview of statistical data of nine consecutive chromatograms for the separation 
of six food additives. Data shown correspond to Figure 4-4. 

analyte 
 

retention time 
[min] 

standard deviation 
[min] 

relative standard deviation 
(RSD) [%] 

theobromine 3.05 0.01 0.19 
theophylline 4.44 0.01 0.18 
catechine 5.31 0.01 0.15 
caffeine 7.28 0.01 0.14 
aspartame 7.77 0.02 0.23 
rutin 12.59 0.01 0.05 

 

The standard deviation of the retention times of the food additives ranged between 0.01 min 

and 0.02 min which corresponds to a relative standard deviation (RSD) between 0.05% and 

0.23%. These values are comparable to the relative standard deviation of retention times 
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obtained for conventional solvent gradient elution. Moreover, these results underline that even 

complex temperature gradients with high gradient slopes lead to very low deviations in 

retention time predictions for all analytes. Furthermore, the high repeatability of complex 

temperature-gradient measurements allows the conclusion that the rather simple linear basic 

input temperature-gradient runs will have only a minor contribution to the error observed for 

predicted retention times in temperature-programming mode (see section 4.4.3). In other 

words, the obtained relative error of predicted retention times is related to the retention model 

and not to the input measurements which have been employed for data fitting. 

Another important prerequisite for the successful implementation of a temperature-gradient 

method in routine laboratory practice is the robustness of the separation method. Here, the 

robustness will be discussed in terms of the critical resolution (RS) using the same method 

which has been employed for the evaluation of the repeatability. Table 4-8 shows a 

comparison of the critical resolution between caffeine and aspartame when the temperatures 

of the gradient points were changed by ± 2 °C. 
 

Table 4-8: Change of the critical resolution (RS) between caffeine and aspartame when 
varying the temperature of the gradient points based on the method depicted in Figure 4-4. 

 T∆  = − 2 °C T∆  = − 1 °C T∆  = ± 0 °C T∆  = + 1 °C T∆  = + 2 °C 
 Time 

[min] 
Temp. 
[°C] 

Time 
[min] 

Temp. 
[°C] 

Time 
[min] 

Temp. 
[°C] 

Time 
[min] 

Temp. 
[°C] 

Time 
[min] 

Temp. 
[°C] 

 0.00 48 0.00 49 0.00 50 0.00 51 0.00 52 
 10.37 126 10.37 127 10.37 128 10.37 129 10.37 130 
 12.00 178 12.00 179 12.00 180 12.00 181 12.00 182 
 14.00 178 14.00 179 14.00 180 14.00 181 14.00 182 

RS 1.06 1.10 1.13 1.09 1.15 

 

As can be seen, decreasing the temperature of the gradient points by − 2 °C results in a 

decrease of the critical resolution from 1.13 to 1.06. In the case when the temperature of the 

gradient points was increased by 1 °C the critical resolution also decreases from 1.13 to 1.09, 

but when increasing the temperature further to + 2 °C an increase of the critical resolution was 

observed. The results given in Table 4-8 underline that the critical resolution will be affected 

even by small changes of the temperature of the gradient points. Moreover, it can be assumed 

that similar changes will be observed if the time of the temperature-gradient points will be 

changed slightly. 
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Regarding the temperature-gradient method preferred for the separation of the food additives 

discussed in section 4.4.3 (Figure 4-3 d), it can be concluded that the method is less robust 

especially when the temperature as well as the time of the gradient points will be changed 

even slightly. In order to avoid issues regarding the critical resolution in routine laboratory 

practice, the column length should be increased to achieve a higher critical resolution. 

4.4.5 Recommendations for Temperature-Programming Method Development 

In order to assist the user to perform temperature-programming method development by 

means of the LES model, we are able to define the following recommendations. 

First, perform two temperature-gradient runs at a low start temperature of, e.g., 40 °C as well 

as two gradient measurements at a higher start temperature of, e.g., 80 °C. If the user has 

information which might be a suitable temperature range for the start temperature of the 

resulting optimized temperature-gradient method, it would be advantageous when the 

temperature range between the upper and lower temperature would include the start 

temperature. In this case, values of TS  as well as 0k  would be calculated by means of an 

interpolation which should result in small errors of predicted retention times when compared 

to calculations by means of an extrapolation of these parameters. Moreover, it is also possible 

to choose start temperatures of e.g. 100 °C and 140 °C for the initial measurements, but it has 

to be considered that the useable temperature range would be restricted. 

The slopes of the basic temperature-gradient measurements at different start temperatures 

should differ by a factor of at least three, for example, 2 °C min-1 and 6 °C min-1. This 

recommendation is to be accounted for by the similarity of the linear elution strength (LES) 

and the linear solvent strength (LSS) relationship. The LSS theory assumes a linear 

relationship between the logarithm of the retention factor of a solute and the content of the 

organic solvent in the mobile phase [38]. In general, this is not precisely correct and curved 

plots will be observed [41-43]. In order to improve the accuracy of retention time predictions 

by means of the LSS model, it was recommended that the slopes of the measurements which 

have been employed for data fitting should differ by a factor of at least three [37,41]. In this 

context a similar issue exists in LES theory where a linear relationship between the logarithm 

of the retention factor of a solute and temperature is assumed. In the case of curved plots of 

ln k  vs T , the accuracy of retention time predictions might be improved when the slopes of 

the input temperature-gradient measurements differ by a factor of three. 
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Furthermore, it is important that the selected slopes of the temperature-gradient measurements 

at the lower start temperature are equal to the slopes of the temperature gradients at the higher 

start temperature. Otherwise, the temperature dependent calculation of the LES parameters 0k  

as well as TS  might fail. 

Moreover, it is recommended that the analytes elute within the temperature-gradient window 

when performing the initial temperature-gradient measurements. For example, if a 

temperature gradient from 40 °C to 140 °C in 50 minutes (2 °C min-1) is applied, the last 

eluting compound should be eluted from the column within 50 minutes. In the case, when an 

analyte elutes isothermally after the temperature-gradient, values of TS  and 0k  calculated as 

described in the theoretical section are less reliable. In other words, less reliable retention time 

predictions would be expected.  

In order to summarize this section, the recommendations and the resulting experimental 

design are graphically represented in Figure 4-5. 

 

Figure 4-5: Recommended experimental design to perform systematic temperature-
programming method development by means of the LES model in high-temperature liquid 
chromatography. 
 

From a practical point of view, the first run should be performed at the lower start temperature 

with the higher gradient slope. It can be assumed that if the compounds elute within this 
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gradient window, the analytes will also elute within the gradient window when the lower 

gradient slope or a higher start temperature is applied. In the case where the analytes do not 

elute within the gradient window, the user has to change the investigated temperature interval 

or steepness of the temperature gradients. 

 

4.5 Conclusion 

The results shown in this study clearly underline that retention time predictions by means of 

the LES model and four temperature-gradient input measurements are very suitable to 

perform systematic temperature-programming method development in high-temperature 

liquid chromatography. On the basis of the new experimental design, reliable retention time 

predictions with an average relative error less than 5% can be achieved.  

Furthermore, the LES model in temperature-programmed LC works in isocratic operation 

mode. Hence, method development can also be performed in the case where an isocratic 

mobile phase consisting of water and an organic modifier is employed, which has been shown 

previously [28]. In addition, if the practitioner does not want to change the start temperature 

during method development, only two temperature-gradient input measurements are required 

to perform method development. Furthermore, the described temperature-programming 

approach is not only restricted to polar analytes such as sulfonamides [29] or food additives. 

The described methodology can also be applied to non-polar substances such as steroids [44] 

by using a column which is less hydrophobic than hybrid silica based C18 columns. For this 

reason, metal oxide based columns such as polymer coated zirconium dioxide would be 

suitable. 
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Appendix for Chapter 4 
 

Abstract 

The Appendix for Chapter 4 contains additional information on how the parameters TS  and 

0k  of the LES retention model were calculated depending on temperature. Additional Figures 

as well as Tables are given that will help understanding Chapter 4. 
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Appendix 4-1. Determination of the Model Parameters TS  and 0k  

For the determination of the parameters TS  and 0k of the LES model equations A 4-1 and  
A 4-2 are required. 
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The combination of both equations yields 
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      (A 4-3) 

Using equation A 4-3, at least two temperature-gradient input measurements are required. 

These runs should differ in the gradient slope by a factor of three. Moreover, selected analytes 

should elute during the applied temperature gradient. Table A 4-1 contains experimentally 

obtained retention times of selected food additives for two temperature-gradient 

measurements from 50 °C to 150 °C within 16.67 minutes (6 °C min-1) and 50 minutes 

(2 °C min-1). 
 

Table A 4-1: Overview of experimentally obtained retention times of selected food additives 
of the basic input measurements. Temperature interval 50 °C - 150 °C. 

analyte experimental retention time 
[min], 2 °C min-1 

experimental retention time 
[min], 6 °C min-1 

theobromine 3.296 3.541 
theophylline 4.843 5.643 
catechine 5.728 7.456 
caffeine 8.224 11.520 
aspartame 9.088 12.885 
rutin 16.011 35.051 
 

The numerical solution of equation A 4-3 can be achieved using a spreadsheet calculator such 

as Microsoft Excel Solver. Figure A 4-1 represents a screenshot of the spreadsheet calculator. 
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Figure A 4-1: Spreadsheet calculator, sheet displaying the equations Solver Parameters that 
are needed to calculate TS  and 0k . 

 

Input: 

A number of experimental data have to be determined and specified. 

• the column dead time ( 0t ) 

• the start temperature of the temperature gradient ( startT ) 

• the final temperature of the temperature gradient ( finalT ) 

• the change in temperature during the temperature gradient ( final startT T T∆ = − ) 

• the gradient time of the first temperature gradient ( 1tG ) 

• the gradient time of the second temperature gradient ( 2tG ) 

Moreover, two additional cells have to be defined for TS  and 0k . 

Experimental: 

The experimentally obtained retention times of the selected analyte (rutin) for the first and the 

second temperature gradient have to be specified in the spreadsheet calculator. 

• experimentally obtained  retention time for the first gradient ( ,exp. 1 [min]R runt ) 

• experimentally obtained retention time for the second gradient ( ,exp. 2[min]R runt ) 
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Calculation: 

Here, two cells have to be specified where the theoretical retention times of the selected 

analyte (rutin) are calculated according to equation A 4-3 for the first and second temperature 

gradient. 

• theoretical retention for the first gradient ( , . 1 [min]R cal runt ) 

• theoretical retention for the first gradient ( , . 2 [min]R cal runt ) 

 

Solver:  

Furthermore, a cell is implemented where the sum of the least squares (SLS) is calculated, 

representing the differences between calculated and experimental retention times for the first 

and second temperature gradient. 

( ) ( )2 2

, . 1 ,exp. 1 , . 2 ,exp. 2R cal run R run R cal run R runSLS t t t t= − + −  

Microsoft Excel Solver is then employed to calculate the values of TS  and 0k  for the selected 

analyte depending on the sum of the least squares being as small as possible. The “Target 

Cell” is the cell which corresponds to the SLS and should be set “Equal To: Min” or a “Value 

of” 0. The cells which are corresponding to TS  and 0k  are the cells used by MS Excel Solver 

to solve the system of equations. Following, the Solver function will search for values of TS  

and 0k  according to equation A 4-3 yielding the same retention times as those obtained 

experimentally. The described procedure has to be performed for each analyte in the sample 

mixture.  
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Appendix 4-2. Temperature-Dependent Calculation of the Retention Factor 0k  

To calculate the parameter 0k  depending on temperature, a data set of ten temperature-

gradient input runs was employed. For these measurements the start temperature of the 

gradients were set from 40 °C (313.15 K) up to 80 °C (353.15 K) with increments of 10 °C. 

The temperature-gradient slopes were set to 2 °C min-1 and 6 °C min-1 for each start 

temperature (runs 1, 2, 5, 7, 9, 11, 13, 15, 17, and 19 of Table 4-1). Afterwards, data fitting as 

described in Appendix 4-1 was performed for each food additive. These calculations yield 

values of 0k  for different start temperatures for each food additive and were depicted in Table 

A 4-2. 
 

Table A 4-2: Overview of calculated retention factors ( 0k ) of selected food additives for 
different start temperatures of the basic input measurements. 

start 
temperature 

[°C] 

start 
temperature 

[K] 
0k  

theobromine 
0k  

theophylline 
0k  

catechine 
0k  

caffeine 
0k  

aspartame 
0k  

rutin 

40 313.15 10.08 18.28 29.79 47.29 54.28 848 
50 323.15 7.57 13.43 20.04 34.33 39.12 497 
60 333.15 5.69 9.83 13.10 24.71 29.64 304 
70 343.15 4.35 7.27 8.68 17.93 22.21 194 
80 353.15 3.37 5.48 5.88 13.12 16.54 121 

 

Afterwards, the obtained values of 0k  were employed to calculate values of the natural 

logarithm of the retention factor ( 0ln k ) for each food additive. Data are given in Table A 4-3.  
 

Table A 4-3: Overview of calculated 0ln k  values of selected food additives for different start 
temperatures of the basic input measurements. 

start 
temperature 

[°C] 

start 
temperature 

[K] 
0ln k  

theobromine 
0ln k  

theophylline 
0ln k  

catechine 
0ln k  

caffeine 
0ln k  

aspartame 
0ln k  

rutin 

40 313.15 2.31 2.91 3.39 3.86 3.99 6.74 
50 323.15 2.02 2.60 3.00 3.54 3.67 6.21 
60 333.15 1.74 2.29 2.57 3.21 3.39 5.72 
70 343.15 1.47 1.98 2.16 2.89 3.10 5.27 
80 353.15 1.21 1.70 1.77 2.57 2.81 4.80 
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Finally, these values were employed to build a plot of 0ln k  vs T  which is shown in  

Figure 4-1 a. 

Moreover, Table A 4-4 contains characteristics of linear regression of the 0ln k  vs T  plot of 

the food additives (T equals temperature in K).  
 

Table A 4-4: Overview of characteristics of linear regression of the 0ln k  vs T  plot of the 
food additives. Data shown correspond to Figure 4-1 a of Chapter 4. 

 theobromine theophylline catechine caffeine aspartame rutin 
slope −2.75 × 10-2 −3.02 × 10-2 −4.08 × 10-2 −3.21 × 10-2 −2.94 × 10-2 −4.83 × 10-2 

intercept 1.09 × 101 1.24 × 101 1.62 × 101 1.39 × 101 1.32 × 101 2.18 × 101 
R2 0.9994 0.9997 0.9998 0.9999 0.9989 0.9989 

 

In order to calculate the retention factors of the food additives depending on the start 

temperature using as few as possible basic input measurements, the retention factors or rather 

the natural logarithm of the retention factors ( 0ln k ) obtained at 313.15 K (40 °C) and 

353.15 K (80 °C) were employed. On the basis of these values linear equations were derived 

for each food additive and are presented in Table A 4-5.  
 

Table A 4-5: Overview of slope and intercept of the linear equations of selected food 
additives, based on a plot of 0ln k  vs T  using data at 313.15 K and 353.15 K. 

 theobromine theophylline catechine caffeine aspartame rutin 
slope −2.74 × 10-2 −3.01 × 10-2 −4.05 × 10-2 −3.21 × 10-2 −2.97 × 10-2 −4.86 × 10-2 

intercept 1.09 × 101 1.23 × 101 1.61 × 101 1.39 × 101 1.33 × 101 2.20 × 101 
 

Following, the linear equations were used to calculate values of the retention factors of the 

analytes for different start temperatures of the temperature gradients. The interpolated 

retention factors are shown in Table A 4-6 for each food additive. Furthermore, these 

retention factors were employed as start values for the calculation of the retention times of the 

food additives which were shown in Figure 4-3, b, c, and d. 

 

 



Appendix for Chapter 4 118 
  

Table A 4-6: Calculated retention factors of food additives for different start temperatures of 
the temperature gradients. 

start 
temperature 

[°C] 

start 
temperature 

[K] 
0k  

theobromine 
0k  

theophylline 
0k  

catechine 
0k  

caffeine 
0k  

aspartame 
0k  

rutin 

50 323.15 7.67 13.52 19.87 34.32 40.33 522 
60 333.15 5.83 10.01 13.24 24.91 29.97 321 
70 343.15 4.43 7.41 8.83 18.08 22.27 197 
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Appendix 4-3. Temperature-Dependent Calculation of TS  

To calculate the parameter TS  depending on temperature, a very similar approach was 

employed as for the temperature-dependent calculation of the parameter 0k  which was 

described in Appendix 4-2.  

A data set of ten temperature-gradient input measurements was employed where the start 

temperature of the gradients were set from 40 °C (313.15 K) to 80 °C (393.15 K) with 

increments of 10 °C. The temperature-gradient slopes were set to 2 °C min-1 and 6 °C min-1 

for each start temperature (runs 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19 of Table 4-1). Following, 

data fitting was performed using the approach described in Appendix 4-1 for each food 

additive at each start temperature of the temperature gradients. The obtained values of TS  are 

given in Table A 4-7. Moreover, the values of TS  were employed to build a plot of TS  vs T  

which is shown in Figure 4-2. 
 

Table A 4-7: Overview of calculated values of TS  of the food additives for different start 
temperatures of the basic input measurements. 

start 
temperature 

[°C] 

start 
temperature 

[K] 
TS  

theobromine 
TS  

theophylline 
TS  

catechine 
TS  

caffeine 
TS  

aspartame 
TS  

rutin 

40 313.15 0.00626 0.00860 0.01241 0.01087 0.01048 0.01921 
50 323.15 0.00550 0.00777 0.01155 0.01034 0.00970 0.01840 
60 333.15 0.00453 0.00684 0.01012 0.00970 0.00954 0.01804 
70 343.15 0.00415 0.00598 0.00822 0.00896 0.00923 0.01792 
80 353.15 0.00366 0.00536 0.00689 0.00806 0.00877 0.01759 

 

Furthermore, Table A 4-8 contains data of linear regression of the TS  vs T  plot of each food 

additive. 
 

Table A 4-8: Overview of data of linear regression of the TS  vs T  plot for each food additive. 
Data shown correspond to Figure 4-2. 

 theobromine theophylline catechine caffeine aspartame rutin 
slope −6.55 × 10-5 −8.27 × 10-5 −1.44 × 10-4 −7.00 × 10-5 −3.89 × 10-5 −3.72 × 10-5 

intercept 2.66 × 10-2 3.45 × 10-2 5.78 × 10-2 3.29 × 10-2 2.25 × 10-2 3.06 × 10-2 
R2 0.9720 0.9960 0.9864 0.9899 0.9462 0.9070 

 



Appendix for Chapter 4 120 
  

In order to calculate the parameter TS  of the food additives depending on the start 

temperature using as few as possible basic input measurements, the values of TS  obtained at 

313.15 K (40 °C) and 353.15 K (80 °C) were employed. On the basis of these values a linear 

equation was built for each food additive which is represented in Table A 4-9.  
 

Table A 4-9: Overview of the linear equations for selected food additives, based on a plot of 
TS  vs T  using data at 313.15 K and 353.15 K. 

 theobromine theophylline catechine caffeine aspartame rutin 
slope −6.50 × 10-5 −8.10 × 10-5 −1.38 × 10-4 −7.02 × 10-5 −4.28 × 10-5 −4.04 × 10-5 

intercept 2.66 × 10-2 3.40 × 10-2 5.57 × 10-2 3.29 × 10-2 2.39 × 10-2 3.19 × 10-2 
 

Following, the linear equations were used to calculate values of TS for the analytes at different 

start temperatures of the temperature gradients. The interpolated values of TS  are shown in 

Table A 4-10 for each food additive. Furthermore, these values of TS  were employed as start 

values for the calculation of the retention times of the food additives which were shown in 

Figure 4-3, b, c, and d of Chapter 4. 
 

Table A 4-10: Calculated values of TS  for food additives for different start temperatures of 
the temperature gradient. 

start 
temperature 

[°C] 

start 
temperature 

[K] 
TS  

theobromine 
TS  

theophylline 
TS  

catechine 
TS  

caffeine 
TS  

aspartame 
TS  

rutin 

50 323.15 0.00561 0.00779 0.01103 0.01017 0.01006 0.01880 
60 333.15 0.00496 0.00698 0.00965 0.00947 0.00963 0.01840 
70 343.15 0.00431 0.00617 0.00827 0.00877 0.00920 0.01799 
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Appendix 4-4. Isothermal Separation of the Food Additives 

In HPLC the practitioner has the choice between isothermal or temperature-programming 

mode. Regarding an isothermal separation, Figure A 4-2 shows an isothermal resolution map 

of six food additives within a temperature range from 20 °C to 140 °C. 

 

 

Figure A 4-2: Isothermal resolution map of selected food additives. Chromatographic 
conditions: stationary phase: Waters XBridge C18 (50 × 3.0 mm, 3.5 µm); mobile phase: 
deionized water + 0.1% formic acid; flow rate: 0.5 mL min-1; temperature range: 40 °C to 
120 °C; UV detection at 200 nm. 
 

If a baseline separation (RS ≥ 1.5) of the analytes is absolutely mandatory, only two 

temperature intervals ranging from 23 °C to 32 °C and 56 °C to 65 °C would be suitable. 

From a practical point of view, a separation at a temperature of 27 °C should yield a high 

critical resolution of 2.7, but unreasonably long retention times will be expected. If the 

separation would be carried out at a temperature of 62 °C, a critical resolution of 1.9 might be 

achieved. In this case, the first five food additives will elute after approximately 18 minutes 

whereas rutin needs approximately two hours to elute from the column. Therefore, the food 

additives should be separated in temperature-programming mode which was discussed in 

section 4.4.3.  
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Appendix 4-5. Calculation of the Retention Time of Rutin for the Separation shown in 
Figure 4-3 c 

Appendix 4-5.1 Required Equations  

To calculate the retention time of an analyte for a segmented temperature gradient, equations 

A 4-4 to A 4-6 are needed. Equation A 4-4 describes the retention time of an analyte during a 

certain temperature segment. Equation A 4-5 can be employed to calculate the change of the 

retention factor of an analyte depending on the applied temperature gradient of a temperature 

segment. This value of the retention factor represents the start value of 0k  for the next 

temperature segment. In order to calculate the retention time of an analyte for an 

isothermal/isocratic hold equation A 4-6 should be employed. 

( )2.30
0 0ln 1

2.3
Tb r

R
T

tt e k k
b

 = + −         (A 4-4) 

0
0

log log T R
r

b tk k
t

= −          (A 4-5) 

( )0 0 1Rt rt k= +          (A 4-6) 

 

Appendix 4-5.2 Calculation of the Retention Time of Rutin for the First Temperature 
Segment of the Separation shown in Figure 4-3 c 

First, a number of experimental/theoretical data has to be determined and specified  

(Figure A 4-3). 

• the column dead time 0t  (cell: G11) 

• the start temperature of the temperature gradient startT  (cell: G12) 

• the final temperature of the temperature gradient finalT  (cell: G13) 

• the change in temperature during the temperature segment (cell: G15) 

• the gradient time of the temperature segment 1tG  (cell: G16) 

• a cell where the temperature-gradient steepness parameter Tb  will be calculated 

according to equation A 4-2 (cell: C12) 
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• a cell for the fractional migration 1segmentr  of the analyte during the first temperature 

segment (cell: C13) 

• two cells containing the values of TS  (cell: C5) and 0k  (cell: C6) which were 

calculated using the approaches described in Appendix 4-2 and 4-3, respectively 

• a cell where the retention time will be calculated according to equation A 4-4  

(cell: C15) 

• a cell where the change of the retention factors during the first segment will be 

calculated according to equation A 4-5 (cells C16 and 17) 

Figure A 4-3 shows a screenshot of the spreadsheet calculator which has been employed to 

calculate the retention time of rutin for the first temperature segment. 

 

Figure A 4-3: Spreadsheet calculator, sheet displaying the equations that are needed to 
calculate the retention time and fractional migration of rutin for the first temperature segment. 
 

The calculation starts by setting the value of the fractional migration of rutin for the first 

temperature segment to 1, assuming that the analyte migrates completely during the first 

segment. As can be seen from Figure A 4-3, this setting yields a retention time of rutin of 
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16.52 min (cell: C15). It has to be considered that the maximal retention time of rutin for the 

first segment can only be equal or lower to the temperature-gradient time of the first segment  

(cell: G16). Hence, the maximal retention time of rutin can only be 5.7 min or lower. In other 

words, if the calculated retention time of an analyte for a temperature segment is higher than 

the temperature-gradient time of the segment, the analyte does not elute during this 

temperature segment. This means that the analyte only migrates a certain distance of the total 

column length during the temperature segment.  

Therefore, the fractional migration of the analyte has to be calculated depending on the 

applied temperature gradient of the first temperature segment. Figure A 4-4 shows a 

screenshot of the spreadsheet calculator which has been employed to calculate the fractional 

migration of rutin for the first temperature segment by means of MS Excel Solver. 

 

Figure A 4-4: Spreadsheet calculator, sheet displaying the equations and Solver Parameters 
that are needed to calculate the fractional migration of rutin for the first temperature segment. 
 

The “Target Cell” corresponds to the retention time of rutin for the first temperature segment 

(cell: C15) and should be set “Equal To” a “Value of” 5.7 “By Changing Cells” that 

corresponds with the fractional migration (cell: C13) of rutin during the first temperature 

segment. Now, the solver function will search for a value of the fractional migration  
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( 1segmentr ), yielding a retention time of rutin of 5.7 min. As can be seen from Figure A 4-4, the 

retention time of rutin was calculated to 5.7 min for the first temperature segment by changing 

the fractional migration to a value of approximately 0.0787 corresponding to a migration 

distance of rutin of 3.94 mm of the total column length during this temperature segment.  

As pointed out before, because of the applied temperature gradient during the first segment, 

the value of the retention factor ( 0k ) of rutin was changed. Now, the retention factor of rutin 

corresponding with the final temperature of the first segment, which is equal to the start 

temperature of the second temperature segment, has to be calculated according to equation 

A 4-5 and yields a value of 97.96 (cell: C17). 
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Appendix 4-5.3 Calculation of the Retention Time of Rutin for the Second Temperature 
Segment of the Separation shown in Figure 4-3 c 

Very similar to the calculation of the retention time of rutin for the first temperature segment, 

a number of experimental/theoretical data have to be determined and specified for the second 

segment (Figure A 4-5). 

• the column dead time 0t  (cell: G19) 

• the start temperature of the temperature gradient startT  (cell: G20) 

• the final temperature of the temperature gradient finalT  (cell: G21) 

• the change in temperature during the temperature segment (cell: G23) 

• the gradient time of the temperature segment 2tG  (cell: G24) 

• a cell where the temperature-gradient steepness parameter Tb  will be calculated 

according to equation A 4-2 (cell: C20) 

• a cell for the fractional migration 2segmentr  of the analyte during the second 

temperature segment (cell: C21) 

• a cell containing the value of TS  (cell: C5)  

• a cell containing the value of 0k  corresponding to the value of the retention factor 

calculated after the first temperature segment (cell: C17)  

• a cell where the retention time will be calculated according to equation A 4-4 

(cell: C23) 

• a cell where the change of the retention factor during the second segment will be 

calculated according to equation A 4-5 (cells C24 and C25) 

Figure A 4-5 shows a screenshot of the spreadsheet calculator which has been employed to 

calculate the retention time of rutin for the second temperature segment. 



Appendix for Chapter 4 127 
  

 

Figure A 4-5: Spreadsheet calculator, sheet displaying the equations that are needed to 
calculate the retention time and fractional migration of rutin for the second temperature 
segment. 
 

The calculation starts with the assumption that rutin will elute completely during the second 

segment. Therefore, the value for the fractional migration 2segmentr  of rutin will be set to 

0.9213 ( 11 0.9213segmentr− = ). Doing so, a retention time of rutin of 3.94 min was calculated 

(cell: C23). It has to be considered that the temperature-gradient time ( 2segmenttG ) of the 

second segment was set to 3.1 min. Therefore, MS Excel Solver has to be employed to find a 

value for 2segmentr  yielding a retention time for rutin of 3.1 min for the second temperature 

segment. Figure A 4-6 depicts the necessary equations and Solver Parameters. 
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Figure A 4-6: Spreadsheet calculator, sheet displaying the equations and Solver Parameters 
that are needed to calculate the fractional migration of rutin for the second temperature 
segment. 
 

The “Target Cell” corresponds to the retention time of rutin for the second temperature 

segment (cell: C23) and should be set “Equal To” a “Value of” 3.1 “By Changing Cell” that 

corresponds to the fractional migration (cell: C21) of rutin during the second segment. 

Afterwards, the solver function will search for a value of 2segmentr  yielding a retention time of 

3.1 min for rutin. A value of approximately 0.4374 gives the desired retention time and 

corresponds to a migration distance of rutin of 21.87 mm of the total column length during the 

second temperature segment.  

Finally, the retention factor ( 0k ) of rutin corresponding to the final temperature of the second 

segment, which is equal to the start temperature of the third temperature segment, has to be 

calculated according to equation A 4-5 and yields a value of 4.64 (cell: C25). 
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Appendix 4-5.4 Calculation of the Retention Time of Rutin for the Third Temperature 
Segment of the Separation shown in Figure 4-3 c 

For the calculation of the retention of rutin for the third temperature segment, a number of 

experimental/theoretical data has to be determined and specified (Figure A 4-7). 

• the column dead time 0t  (cell: G27) 

• the start temperature of the temperature gradient startT  (cell: G28) 

• the final temperature of the temperature gradient finalT  (cell: G29) 

• the change in temperature during the temperature segment (cell: G31) 

• the gradient time of the temperature segment 3tG  (cell: G32) 

• a cell where the temperature-gradient steepness parameter Tb  will be calculated 

according to equation A 4-2 (cell: C28) 

• a cell for the fractional migration 3segmentr  of the analyte during the third temperature 

segment (cell: C29) 

• a cell containing the value of TS  (cell: C5)  

• a cell containing the value of 0k  corresponding to the value of the retention factor 

calculated after the second temperature segment (cell: C25)  

• a cell where the retention time will be calculated according to equation A 4-4  

(cell: C31) 

• a cell where the change of the retention factor during the third segment will be 

calculated according to equation A 4-5 (cells C32 and C33) 

Figure A 4-7 depicts a screenshot of the spreadsheet calculator which has been employed to 

calculate the retention time of rutin for the third temperature segment. 

The calculation starts again with the assumption that rutin will elute during the third segment 

of the gradient by setting the value of the fractional migration 3segmentr  to 0.4839  

( 1 21 0.4839segment segmentr r− − = ), yielding a retention time of 0.90 min (cell: C31) for rutin for 

the third temperature segment. As can be seen, this value is smaller than the temperature-
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gradient time of 1.2 min (cell: G32) and points out that rutin elutes during the third segment 

from the column. 

Finally, the retention times of rutin during each segment sum up to 9.70 min (cell: C44), 

which represents the total retention time of rutin. 

 

Figure A 4-7: Spreadsheet calculator, sheet displaying the equations that are needed to 
calculate the retention time and fractional migration of rutin for the third temperature 
segment. 
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Appendix 4-6 Robustness of a Temperature-Gradient Method for the Separation of 
Selected Food Additives 

In order to underline that small changes of the temperatures of the gradient points will also 

have an effect of the retention times of the food additives, Figure A 4-8 shows the resulting 

chromatograms, when the temperature-gradient points of the separation method were changed 

by ± 1 °C (see also section 4.4.4). 

 

 

Figure A 4-8: Overlay of three chromatograms of the separation of six food additives. The 
temperature-gradient points were changed ± 1 °C. Chromatographic conditions: Waters 
XBridge C18 (50 × 3.0 mm, 3.5 µm); mobile phase: water + 0.1% formic acid; flow rate: 
0.5 mL min-1; injection volume: 1 µL; temperature gradient (± 0 °C): 0 min at 50 °C; 
10.37 min at 128 °C; 12.00 at 180 °C; 14.00 min at 180 °C. 
 

As can be seen, if the temperature of the gradient points were decreased about 1 °C, an 

increase of the retention times of the food additives was observed. In contrast, if the 

temperature of the gradient points were increased about 1 °C, a decrease of the retention times 

of the food additives was observed. This means that small changes of the temperature of the 

temperature-gradient points will have a significant effect on the repeatability as well as the 

robustness of a temperature-gradient method. In other words, during the validation of a 

temperature-gradient method, the user should carefully check how the separation method will 

be affected by small changes of the temperature as well as the time of the gradient points. 



Appendix for Chapter 4 132 
  

List of Symbols of Appendix for Chapter 4 

Tb  temperature-gradient steepness parameter 

0k  retention factor of an analyte i  at the start of the temperature gradient 

r  fractional migration of an analyte i  during a segment of the temperature-gradient 

 method 

TS  analyte specific constant of the LES retention model 

T∆  difference between start and final temperature of the temperature gradient 

0t  column dead time 

finalT  final temperature of the temperature gradient 

tG  temperature-gradient time 

Rt  retention time of an analyte i  

startT  start temperature of the temperature gradient 
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Chapter 5. A General Strategy for Performing Temperature 

Programming in High Performance Liquid 

Chromatography – Prediction of Simultaneous 

Solvent and Temperature Gradients 
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5.1 Introduction 

In high performance liquid chromatography (HPLC) the parameter temperature is often 

discussed only in terms of speeding up a separation [1,2]. This is due to the fact that 

increasing the temperature lowers the viscosity of the mobile phase and a reduced 

backpressure is observed. Hence, the flow rate can be increased concurrently resulting in a 

decrease of the analysis time. An increase of temperature yields also a flattened van Deemter 

curve. Thus, the increased flow rate only slightly affects the efficiency [3,4]. In addition, the 

reduced backpressure enables the use of smaller particles or longer columns which increases 

the efficiency significantly [5]. 

However, temperature is not only a tool to speed up a separation or to increase efficiency; 

temperature also plays an important role to change selectivity in liquid chromatography, 

especially for polar and ionizable compounds [6,7]. Chen and Horvath compared solvent 

gradient elution and temperature programming for the separation of selected alkylbenzenes 

and proteins [8]. They concluded that temperature programming can only be an insufficient 

alternative to solvent gradient elution. However, they also pointed out that temperature 

programming in combination with solvent gradient elution could be employed as fine tuning 

to enhance the critical resolution of structurally similar macromolecules such as proteins. 

Another impressive example was given by Vanhoenacker and Sandra [3] who developed a 

method for the separation of 20 pesticides by a combined solvent and temperature gradient. 

They could show that an isothermal baseline separation within a temperature range from 

40 °C to 90 °C by means of a solvent gradient was not possible, and a combination of 

simultaneous solvent and temperature programming was required for a baseline separation. A 

similar example was given by Giegold et al. [9] who could also show that a baseline 

separation of eight sulfonamides and trimethoprim was only possible in dual gradient mode 

where a solvent and temperature gradient were applied simultaneously. However, it has to be 

considered that method development based on temperature programming of the examples 

cited above was governed by trial and error. Although the parameter temperature is 

considered during method development in LC and several commercially available method 

development software packages such as ChromSwordAuto [10] or DryLab [11] have 

implemented retention models where temperature is considered, these models are restricted to 

isothermal operation mode. This problem was first considered by Nikitas and Pappa-Louisi. 

They developed prediction models which permit simulation of retention times when solvent 

composition and temperature are changed simultaneously [12,13]. Up to now, their models 
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were tested using only linear temperature gradients within a relatively small temperature 

interval from 15 °C to 75 °C where only moderate gradient slopes from 2 °C min-1 up to 

10 °C min-1 were applied. Recently, Cela and co-workers have described computer-assisted 

method development in high-temperature liquid chromatography based on an evolutionary 

algorithm [14]. The developed approach also permits dual mode simulations of retention 

times when solvent composition and temperature are changed simultaneously. In their study, a 

temperature interval from 40 °C to 180 °C was investigated using temperature gradient slopes 

up to 20 °C min-1. Moreover, they noted that their software package PREGA has incorporated 

this methodology and can be downloaded for free [14]. However, based on the data given by 

Cela and co-workers we calculated major relative errors up to 10% for simultaneous solvent 

and temperature-gradient predictions.  

Lately, we could show that the linear elution strength model from temperature-programmed 

gas chromatography (GC) can be employed for predictions of simple linear as well as more 

complex segmented temperature gradients in temperature-programmed liquid chromatography 

[15,16]. It was shown that temperature gradients with slopes up to 30 °C min-1 in a 

temperature interval from 50 °C up to 180 °C can be predicted with high accuracy. On the 

basis of these findings and the knowledge of the similarity of the linear elution strength (LES) 

and the linear solvent strength (LSS) retention models, the aim of the present study was to 

develop a combined model in order to predict simultaneous solvent and temperature gradients 

in LC. 
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5.2 Experimental Section 

5.2.1 Chemicals 

High-purity deionized water was prepared by an Elix 10 – Milli-Q Plus water purification 

system (Millipore, Eschborn, Germany). Acetonitrile (Optigrade), acetone (Optigrade) and 

methanol (Optigrade) were purchased from LGC Standards (Wesel, Germany). In this work 

two different analyte mixtures were used. The first one was a commercially available mixture 

of thirteen aldehyde-2,4-dinitrophenylhydrazones (aldehyde-2,4-DNPH) and ketone-2,4-

dinitrophenylhydrazones (ketone-2,4-DNPH). The substances and the concentration in the 

mixture are given in Table 5-1. This mixture is called A-DNPH mixture during this work. For 

the measurements, this mixture was diluted with water by a factor of three and then used as 

injection solution.  
 

Table 5-1: Substances of the A-DNPH test mixture. 

analyte CAS 
number 

elution 
order 

conc. 
standard [µg mL-1] 

conc. injected 
solution [µg mL-1] 

formaldehyde-2,4-DNPH 1081-15-8 1 210.0 70.0 
acetaldehyde-2,4-DNPH 1019-57-4 2 152.0 50.7 
acrolein-2,4-DNPH 888-54-0 3 126.4 42.1 
acetone-2,4-DNPH 1567-89-1 4 124.2 41.4 
propionaldehyde-2,4-DNPH 725-00-8 5 124.2 41.4 
crotonaldehyde-2,4-DNPH 1527-96-4 6 108.2 36.1 
methacrolein-2,4-DNPH 5077-73-6 7 108.1 36.0 
2-butanone-2,4-DNPH 958-60-1 8 106.0 35.3 
butyraldehyde-2,4-DNPH 1527-98-6 9 106.4 35.5 
benzaldehyde-2,4-DNPH 1157-84-2 10 82.0 27.3 
valeraldehyde-2,4-DNPH 2057-84-3 11 92.0 30.7 
m-tolualdehyde 2,4-DNPH 2880-05-9 12 76.0 25.3 
hexaldehyde-2,4-DNPH 1527-97-5 13 84.0 28.0 
 

The second one was a mixture of eight polycyclic aromatic hydrocarbons (PAHs) which 

consisted of naphthalene, acenaphthylene, fluorene, anthracene, pyrene, chrysene, 

benzo(k)fluoranthene, and indeno(1,2,3,-cd)pyrene. Stock solutions were prepared by 

dissolving an equivalent amount of each PAH in a mixture of 50/50 (v/v) deionized 

water/acetonitrile to obtain a concentration of 0.5 mg mL-1. For the measurements, a mixture 

was prepared by adding an equivalent amount of each stock solution to obtain a concentration 
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of 0.0625 mg mL-1 of each analyte in the mixture. All chemicals employed in this study 

except for the solvents were purchased from Sigma-Aldrich (Seelze, Germany) and of p. a. 

grade. 

5.2.2 HPLC System 

Two different HPLC systems (Agilent 1200 Rapid Resolution and Shimadzu LC 10) were 

used to collect the chromatographic data. The Agilent 1200 Series RRLC (Agilent 

Technologies, Waldbronn, Germany) consisted of a G1312B SL binary pump, a G1379B 

degasser, a G1367C autosampler and a G1315C diode array detector (DAD). To heat the 

mobile and stationary phase an SIM HT-HPLC 200 high-temperature column oven (SIM, 

Scientific Instruments Manufacturer, Oberhausen, Germany) was used [17,18]. The Shimadzu 

LC 10 (Shimadzu, Duisburg, Germany) consisted of two LC-10ADVP pumps, a DGU-14 A 

degasser, an SIL-10ADVP autosampler, an SPD-M10AVP diode array detector (DAD), an 

SCL-10AVP controller, and the SIM HT-HPLC 200 high-temperature column oven. A 500 psi 

backpressure regulator (GammaAnalysenTechnik, Bremerhaven, Germany) was connected 

behind the DAD to keep the mobile phase in the liquid state. For data acquisition and 

analysis, Agilent ChemStation for LC 3D systems (Rev. B.04.02 [96]) and Shimadzu 

LCsolution (version 1.21 SP 1) were employed. 

5.2.3 Simultaneous Solvent and Temperature-Gradient Measurements of the 
A-DNPH Mixture 

The measurements of the A-DNPH mixture were performed on the Agilent HPLC system 

using an Agilent Zorbax StableBond C18 column (50 × 3.0 m, 1.8 µm). As organic solvents 

(% B) in the mobile phase acetone and methanol were employed. The flow rate was set to 

1.0 mL min-1 and the injection volume was set to 5 µL. UV detection was performed at a 

wavelength of 360 nm. At first, linear solvent gradients from 5% to 100% B in 5, 10 and 

30 minutes were carried out under isothermal conditions at 70 °C. Afterwards, the same 

solvent gradient measurements were applied and concurrently overlaid by linear temperature 

gradients from 70 °C to 120 °C ( T∆  = 50 °C) within 5, 10, and 30 minutes. 
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5.2.4 Simultaneous Solvent and Temperature-Gradient Measurements of the 
PAH Mixture 

The measurements of the PAH mixture were performed on the Shimadzu HPLC system using 

a Waters XBridge C18 column (75 × 4.6 m, 2.5 µm). As mobile phase a mixture of deionized 

water and methanol (% B) at a flow rate of 1.0 mL min-1 was employed. The injection volume 

was set to 3 µL and UV detection was carried out at a wavelength of 254 nm. First, linear 

solvent gradients from 40% to 100% methanol in 30, 60, and 90 minutes were carried out at a 

temperature of 50 °C. Afterwards, the same solvent gradient measurements were applied and 

concurrently overlaid by linear temperature gradients from 50 °C to 180 °C ( T∆  = 130 °C) 

within 30, 60, and 90 minutes. 

 

5.3 Theory 

In order to perform systematic method development in liquid chromatography, the so called 

linear solvent strength model (LSS), which was introduced by Snyder and co-workers can be 

used [19,20]. On the basis of two experimental solvent gradient measurements it is possible to 

predict the retention time Rt  of an analyte with high accuracy (equations 5-1 and 5-2). 

( )0
0 0log 2.303 1R D

tt k b t t
b φ φ
φ

= + + +         (5-1) 
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φ

φ
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=           (5-2) 

Here, 0t  is the column dead time, 0k φ  is the value of the retention factor at the start of the 

solvent gradient at constant temperature and Dt  is the dwell time of the gradient system. The 

solvent gradient-steepness parameter bφ  consists of the solute constant Sφ , the change in the 

volume fraction of the organic solvent during the gradient φ∆  ( final startφ φ φ∆ = − ) and the 

solvent gradient time Gt . As mentioned before, using two initial runs, values of bφ  or rather 

Sφ  and 0k φ  for each analyte are derived by a numerical solution of equations 5-1 and 5-2 

using the Microsoft Excel Solver [19-21]. 

In order to predict the retention time of an analyte depending on a temperature gradient in 

liquid chromatography we have shown that the linear elution strength model (LES) from 

temperature-programmed gas chromatography could successfully be adapted to temperature-
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programmed LC [15,16]. Using the LES model the retention time Rt  of an analyte can be 

simulated as a function of experimental conditions using equations 5-3 and 5-4: 

( )
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R T T
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          (5-4) 

where 0t  is the column dead time and 0Tk  is the value of the retention factor of the solute at 

the start of the temperature gradient under isocratic conditions. The temperature gradient-

steepness parameter Tb  consists of the solute constant TS , the temperature range T∆   

( final startT T T∆ = − ) and the temperature-gradient time GT . The required model parameters Tb  

or rather TS  and 0Tk  can then be calculated by a numerical solution of equations 5-3 and 5-4 

using the Microsoft Excel Solver. This procedure is very similar to the numerical solution of 

the LSS relationship [21-23]. Snyder and co-workers [24-27] could show that the parameter 

temperature has a pronounced effect on the retention factor of an analyte in isothermal 

operation mode. If the temperature is increased in reversed phase liquid chromatography (RP-

LC), the retention factor decreases. The decrease of the retention factor is also expected in 

temperature-programming mode. In other words, the observed retention factor of an analyte 

for a linear solvent gradient at constant temperature like 70 °C should decrease if this solvent 

gradient is concurrently overlaid by a temperature gradient from e.g. 70 °C to 120 °C. The 

difference between the observed retention factors will be attributed to the influence of the 

overlaid temperature gradient. In order to combine the LSS and LES model to predict 

simultaneous solvent and temperature gradients, at least four input measurements are 

required. Two solvent gradient runs which differ in the slope of the gradient at constant 

temperature (isothermal) and the same two solvent gradient runs which are overlaid by 

temperature gradients which also differ in the slope of the temperature gradient. Moreover, 

the start temperature of the temperature gradients must be equal to the temperature of the 

isothermal solvent gradient measurements. Subsequently, the two isothermal solvent gradient 

measurements can be employed to calculate the required LSS model parameters bφ  or rather 

Sφ  and 0k φ  for each analyte by a numerical solution of equations 5-1 and 5-2. In order to 

calculate the required LES model parameters TS  and 0Tk , the difference between the 

retention times of the isothermal solvent gradient measurements and the measurements which 

are overlaid by temperature gradients have to be employed.   
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5.4 Results and Discussion 

At first, to clarify the influence of temperature on retention in liquid chromatography  

Figure 5-1 depicts four chromatograms of the separation of the A-DNPH mixture using 

methanol (Figure 5-1 a, c) and acetone (Figure 5-1 b, d) as organic co-solvent in the mobile 

phase. If a linear solvent gradient from 5% to 100% methanol in 30 minutes is applied at 

70 °C the last compound elutes after approximately 19.7 minutes (Figure 5-1 a). In the case of 

the same solvent gradient overlaid by a linear temperature gradient from 70 °C to 120 °C 

within 30 minutes, a retention time of 17.6 minutes was observed for the last eluting 

compound (Figure 5-1 c). 
 

 

Figure 5-1: Separation of selected A-DNPHs on an Agilent Zorbax StableBond C18 column. 
Chromatographic conditions: mobile phase: A: deionized water, B: acetone (a, c), methanol 
(b, d); solvent gradient: 5% - 100% B in 30 minutes; temperature: isothermal at 70 °C (a, b), 
temperature gradient from 70 °C-120 °C in 30 minutes (c, d); injection volume: 5 µL; 
detection: UV at 360 nm. For analytes and elution order see Table 5-1. 
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Similar results were obtained using acetone as organic co-solvent in the mobile phase. The 

retention times of selected analytes decrease when a solvent gradient was concurrently 

overlaid by a temperature gradient (Figure 5-1 b and d). This can also be seen from Table 5-2 

where the retention factors of selected A-DNPHs under isothermal and temperature-gradient 

conditions are compared. 
 

Table 5-2: Comparison of retention factors of selected A-DNPHs using simultaneous 
variation of solvent composition and temperature ( , ,e Tk φ ) vs isothermal solvent gradient 
measurements ( ,ek φ ). 

analyte methanol acetone methanol acetone 

φ,ek  φ, ,e Tk  φ,ek  φ, ,e Tk  
difference 

of k  
difference 
of k [%] 

difference 
of k  

difference 
of k [%] 

1 34.14 31.35 29.60 27.38 2.21 8.2 2.21 7.5 
2 46.71 42.31 38.99 35.75 3.25 9.4 3.25 8.3 
3 57.10 51.13 47.05 42.93 4.12 10.5 4.12 8.8 
4 57.80 51.95 48.41 43.90 4.51 10.1 4.51 9.3 
5 60.62 54.37 50.93 46.20 4.73 10.3 4.73 9.3 
6 67.80 60.44 56.14 50.81 5.33 10.9 5.33 9.5 
7 70.38 62.71 57.63 52.26 5.36 10.9 5.36 9.3 
8 70.38 63.74 58.57 52.93 5.64 9.4 5.64 9.6 
9 71.29 63.74 59.78 54.05 5.73 10.6 5.73 9.6 
10 77.14 68.46 63.02 56.90 6.12 11.2 6.12 9.7 
11 80.65 72.04 67.11 60.60 6.52 10.7 6.52 9.7 
12 85.20 75.80 68.60 62.08 6.51 11.0 6.51 9.5 
13 88.35 79.04 73.11 66.02 7.10 10.5 7.10 9.7 

 

It becomes apparent that the retention factors of all analytes decrease by approximately 10% 

when the solvent gradient measurements are overlaid by temperature gradients ( T∆  = 50 °C). 

This is true for both data sets using methanol as well as acetone as organic solvents in the 

mobile phase.  

Furthermore, temperature also affects the selectivity of an RP-LC separation which can also 

be seen in Figure 5-1. In the case of an isothermal solvent gradient elution using methanol as 

organic modifier (Figure 5-1 a) there are two groups of peaks which are insufficiently 

separated (Peak group 3/4 and group 7/8/9). If the solvent gradient is overlaid by a 

temperature gradient (Figure 5-1 c), the resolution between peaks 3/4 is increased from 0.65 

to 1.01. Similar to peak pair 3/4 also the resolution between double peak 7/8 and peak 9 is 
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increased from 0.69 to 1.04. In contrast, if acetone is used as organic solvent in the mobile 

phase, the resolution between these peaks decreases as the solvent gradient is overlaid by a 

temperature gradient (Figure 5-1 b and Figure 5-1 d). For example, the resolution between 

peaks 3/4 decreases from 1.63 to 1.30 and the resolution between peak pair 7/8 and peak 9 

decreases from 1.03 to 0.74. These results underline that the parameter temperature and 

temperature gradients can be employed as fine tuning tool to improve the separation in liquid 

chromatography. Moreover, the results shown in Figure 5-1 point out that the organic 

modifier can also have a pronounced effect on the selectivity of the separation. The resolution 

between peaks 3/4 and peaks 7/8/9 is significantly higher using acetone as organic solvent 

when compared to the separation where methanol is used under isothermal conditions  

(Figure 5-1 a, b). From a practical point of view, it would be advantageous to perform a 

solvent screening to find out the optimal organic modifier before a change of the HPLC 

column is considered [28]. 

In order to predict retention times of selected A-DNPHs for simultaneous solvent and 

temperature gradients the approach described in the theoretical section was applied. As input 

data two solvent gradient measurements from 5% to 100% methanol within 10 and 

30 minutes at 70 °C and the same solvent gradient runs which are overlaid by temperature 

gradients from 70 °C to 120 °C also within 10 and 30 minutes were employed. The two 

isothermal solvent gradient measurements were then used to calculate the necessary LSS 

parameters Sφ  and 0k φ  for each analyte. Afterwards, the required LES parameters TS  and 

0Tk  were calculated. Unfortunately, the data fitting process was not successful because the 

effect on the target parameter was too small to solve the system of equations. Similar results 

were observed during data fitting using the data of acetone. Although the required LSS 

parameters could be calculated successfully based on the isothermal solvent gradient input 

measurements, it was not possible to solve the equations for the LES relationship. We 

suppose that this problem is related to the minor influence of temperature on retention. That 

means data fitting would be only successful when experimental conditions had been chosen 

where the influence of temperature is more pronounced on the retention of the analytes. To 

test this hypothesis selected PAHs were employed as analytes. The investigated temperature 

interval was enlarged from 50 °C to 180 °C ( T∆  = 130 °C). Because of the much higher end 

temperature a Waters XBridge C18 column was chosen for these experiments [29]. Moreover, 

the slopes of the employed solvent gradients were decreased from 9.5% B min-1 and 

3.17% B min-1 to 2.0% B min-1 and 0.67% B min-1, respectively. Figure 5-2 shows two of 
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these chromatograms under isothermal (Figure 5-2 a) and temperature-gradient conditions 

(Figure 5-2 b). In addition, Table 5-3 compares the observed retention factors of selected 

PAHs which are represented in Figure 5-2. It can be seen that the retention time of the last 

eluting compound decreases from 24.8 minutes to 17.6 minutes if the isothermal solvent 

gradient (Figure 5-2 a) is overlaid by a temperature gradient (Figure 5-2 b).  
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Figure 5-2: Separation of selected PAHs on a Waters XBridge C18 column. Chromatographic 
conditions: mobile phase: A: deionized water, B: methanol; solvent gradient: 40% - 100% B 
in 30 minutes; temperature: a) isothermal at 50 °C, b) temperature gradient: 50 °C - 180 °C in 
30 minutes; injection volume: 3 µL; detection: UV at 254 nm. For analytes and elution order 
see Table 5-3. 
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In Table 5-3 it is apparent that the influence of the temperature gradient on the retention 

factors (of selected PAHs) is more pronounced when compared to the measurements of the  

A-DNPH mixture. Here, the overlaid temperature gradient yields a decrease of the retention 

factor of the PAHs between 20% and 30%. 
 

Table 5-3: Comparison of retention factors of selected PAHs using simultaneous variation of 
solvent composition and temperature ( , ,e Tk φ ) vs isothermal solvent gradient measurements  
( ,ek φ ). 

analyte elution 
order 

φ,ek  φ, ,e Tk  difference 
of k  

difference 
of k [%] 

naphthalene 1 13.24 10.48 2.76 20.8 
acenaphthylene 2 15.36 11.87 3.49 22.7 
fluorene 3 19.18 14.32 4.86 25.3 
anthracene 4 20.93 15.47 5.46 26.1 
pyrene 5 23.35 16.98 6.37 27.3 
chrysene 6 26.00 18.67 7.33 28.2 
benzo(k)fluoranthene 7 28.71 20.35 8.37 29.1 
indeno(1,2,3,-cd)pyrene 8 31.19 21.79 9.41 30.2 
 

With respect to prediction of retention times of selected PAHs for simultaneous solvent and 

temperature gradients, the approach described in the theoretical section was also employed. 

As input data two solvent gradient measurements from 40% to 100% methanol within 30 and 

90 minutes at 50 °C and the same solvent gradients which are overlaid by temperature 

gradients from 50 °C to 180 °C also within 30 and 90 minutes were used. In this case data 

fitting of the LSS and LES model was successful, and four combined solvent and temperature 

gradients were predicted. Figure 5-3 presents a comparison of predicted vs experimental 

retention times of each PAH. The solid line in Figure 5-3 shows ideal prediction, i.e., y x= . 

Note that the data points which are shown in Figure 5-3 were not included in the data fitting 

process. The results indicate that the predicted retention times match the experimental 

retention times very well, which is also underlined by the relative error. The relative error 

ranges between 0.1% and 2.1%, and an average relative error of 0.6% was calculated.  
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Figure 5-3: Comparison of predicted retention times calculated by a combination of the LSS 
and LES model vs experimental retention times of selected PAHs. Predictions based on four 
experimental measurements, two solvent gradients (0.67% B min-1 and 2% B min-1) at 70 °C 
and the same solvent gradients which are overlaid by temperature gradients (1.4 °C min-1 and 
4.3 °C min-1). 
 

The accuracy of retention time predictions based on the described combination of the LSS and 

LES model are comparable with findings by Nikitas and co-workers [12]. They reported a 

maximal relative error of 3.4% and an average error of 1.1% of predicted retention times for 

simultaneous solvent and temperature programming. During their study a temperature interval 

from 15 °C to 75 °C ( T∆  = 60 °C) was investigated using temperature gradients with slopes 

from 2 °C min-1 to 10 °C min-1. These temperature gradients were concurrently overlaid by 

solvent gradients from 30% to 70% acetonitrile (ACN) with slopes from 0.6% ACN min-1 to 

1.5% ACN min-1. The measurements were performed on a normal-bore HPLC column 

(150 × 4.6 mm, 3.5 µm) using a conventional air-bath HPLC column oven. The group of Cela 

and co-workers also introduced a methodology which permits retention time predictions for 

simultaneous solvent and temperature programming in liquid chromatography [14]. On the 

basis of the data given by Cela and co-workers we calculated major relative errors of 

predicted retention times of up to 10%. During their study a large temperature interval from 

40 °C to 180 °C ( T∆  = 140 °C) was investigated using gradient slopes up to 20 °C min-1. The 

temperature gradients were overlaid by solvent gradients between 5% and 95% methanol 
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(MeOH) where gradient slopes from 2.5% MeOH min-1 to 15% MeOH min-1 were applied. 

Also in their study a normal-bore HPLC column (50 × 4.6 mm, 5 µm) was employed but they 

used a specially designed high-temperature column oven which is also based on forced-air 

convection. However, dual mode retention time predictions using the approach described by 

Cela and co-workers are less reliable when compared to our approach or the approach 

presented by Nikitas and co-workers. This could be related to thermal lag phenomena in the 

HPLC column and the column oven. For example, Nikitas and co-workers introduced a 

differential equation to take the thermal lag phenomena into account and to improve the 

accuracy of retention time predictions [13]. Moreover, we could show that thermal lag 

phenomena can be neglected during retention time predictions using the LES model in 

temperature-programmed LC if a column oven based on block heating is employed [15]. In 

contrast, Cela and co-workers used a high-temperature column oven, which is based on the 

air-bath concept [14]. Furthermore, they do not describe if their approach takes thermal lag 

phenomena into account. It is possible that this might be the reason for the major errors of 

dual mode retention time predictions.  

Regarding our approach of retention time predictions of simultaneous solvent and temperature 

gradients it has to be considered that predictions based on this approach strongly depend on 

the conditions of the measurements which are employed during data fitting. For reliable 

retention time predictions, the start temperature as well as the percentage of the organic 

modifier at the start of the temperature and the solvent gradient must be equal to the values of 

the measurements which are used for data fitting. Otherwise, major errors of predicted 

retention times will be observed. In other words, to predict simultaneous solvent and 

temperature gradients where a different start temperature of the temperature gradient is 

applied and the composition of the mobile phase is not equal to the composition of the mobile 

phase which is employed during data fitting, at least eight input measurements are required. 

Moreover, it is difficult to immediately find optimal solvent and temperature gradient 

conditions that guarantee a successful data fitting using the LES model. This means that the 

practitioner has to perform several pretest measurements to find out optimal conditions for the 

eight basic input runs. Hence, some failed attempts will be expected which might increase the 

quantity of initial basic measurements. In contrast, the dual mode gradient retention model 

developed by Nikitas and Pappa-Louisi [12,13,30] permits predictions of simultaneous 

solvent and temperature gradients based on six isocratic/isothermal measurements. They used 

two temperatures at which measurements were performed at three different organic modifier 
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percentages. The approach described by Cela and co-workers also uses isocratic/isothermal 

measurements and in a second stage gradient measurements [14]. Cela et al. recommend three 

data points in each dimension. In other words, nine isocratic/isothermal runs and at least two 

solvent and/or temperature gradient input measurements. This means that at least eleven input 

runs are required. Nikitas et al. and Cela et al. preferred isocratic/isothermal input 

measurements because predictions based on these data are more precise when compared to 

predictions on the basis of gradient input measurements due to linear retention assumptions 

using gradient data. A drawback of the use of isocratic/isothermal input data is that more 

experimental work is required. For example, if an analyte mixture is considered which 

consists of polar as well as non-polar analytes, it will be difficult to elute strongly retained 

compounds at low percentages of the organic modifier in the mobile phase. In other words, an 

excessive long analysis time or an increase of the quantity of the initial measurements is 

expected. In contrast, during solvent and/or temperature-gradient elution, the elution strength 

(polarity) of the mobile phase is continuously increased so that the elution of compounds with 

different polarity will be possible during the same run.  

However, an advantage when using the approaches developed by Nikitas et al. and Cela at al. 

is that reliable retention time predictions are also possible if the start temperature of the 

temperature gradient as well as the start percentage of the organic modifier of the solvent 

gradient is different from the values of the basic input measurements. In addition, problems 

during data fitting were not reported by Nikitas and Cela. 

Summing up, in order to perform as few measurements as possible during systematic method 

development for simultaneous solvent and temperature programming in LC, the dual mode 

retention model developed by Nikitas should be employed instead of the approach described 

during this study. Nevertheless, the approach introduced by Cela and co-workers seems to be 

useful as well, but prior to further widespread use the reason for the higher relative errors in 

predicted dual mode retention times needs to be identified and corrected. 
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Chapter 6. General Conclusion and Outlook 

The use of elevated temperature or temperature programming in liquid chromatography (LC) 

provides several advantages such as fast analysis, increased efficiency, a change of selectivity 

and an increase of the elution strength of the mobile phase. Method development in high-

temperature liquid chromatography is usually performed by trial and error approaches 

although a systematic approach is required. Therefore, this work was focused on the 

development of a systematic, computer-assisted approach for method development in 

temperature-programmed LC. For that reason, the empirical linear elution strength (LES) 

model was transferred from temperature-programmed gas chromatography to temperature-

programmed liquid chromatography. It was shown that the LES model can also be employed 

to predict retention times of selected analytes depending on a temperature gradient in LC. 

Moreover, retention time predictions could be calculated very precisely and independent of 

the column chemistry (silica-based and metal oxide-based columns), inner column diameter 

(1.0 mm to 4.6 mm) and compound class (steroids, polycyclic aromatic hydrocarbons, 

sulfonamides, and food additives). Furthermore, the retention times for these classes of 

compounds were predicted for large temperature intervals ranging from 40 °C up to 180 °C 

where the temperature gradient slopes were varied between 1.5 °C min-1 and 30 °C min-1. For 

these retention time predictions an average relative error of less than 5% was observed. In 

addition, a set of recommendations was established to assist the user during systematic 

method development in liquid chromatography.  

Moreover, in this work isothermal retention time predictions based on temperature gradient as 

well as isothermal input data were investigated. Using the classical approach by means of a 

linear regression of a plot of ln k  vs 1/ T , curved plots were observed whereas a strict linear 

behavior was expected. The aim of this work was not to investigate why curved plots of 

ln k  vs 1/ T  will be observed. However, this might be a topic for further investigations, 

because a deeper understanding of the reasons for curved plots of ln k  vs 1/ T  would 

facilitate the choice of a suitable mathematical relationship to predict isothermal retention 

times.  

In addition, further work should focus on the development of a broader variety of temperature 

stable HPLC columns. Up to now, several high temperature stable columns are commercially 
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available, but a broader variety of column selectivities (e.g. Phenyl, Amino, C8, C4) would 

assist the application of high temperature liquid chromatography.  

Furthermore, for a successful implementation of method development software in high-

temperature LC, additional studies should focus on the prediction of the peak width 

depending on temperature gradients, because the main aim of systematic method development 

in liquid chromatography is the precise prediction of the chromatographic resolution. This 

simulation requires an exact prediction of the retention time and peak width of the analytes. 

Using the LES model, the retention times of the analytes can be predicted very precisely. In 

future studies, it has to be evaluated how the peak width can be predicted depending on 

temperature gradients in liquid chromatography. Furthermore, these investigations should 

consider different high-temperature column oven concepts such as forced-air convection 

column ovens as well as ovens based on block heating.  

Regarding retention time predictions of simultaneous solvent and temperature programming 

in LC, it seems that the approach developed by Nikitas et al. is more suitable or applicable 

when compared to the methodology described in this work. In the present work, isothermal as 

well as simultaneous solvent and temperature-gradient input measurements were required to 

predict retention times for simultaneous solvent and temperature gradients. On the basis of 

this data set it is not possible to predict retention times of analytes for temperature gradients 

under isocratic conditions. In contrast, the retention models developed by Nikitas and co-

workers make use of isothermal/isocratic input measurements. On the basis of this data set, 

the retention models permit the prediction of retention times for temperature gradients in 

isocratic mode as well as simultaneous solvent and temperature gradients. In other words, the 

same data set can be employed for both prediction approaches. However, it has to be 

considered that the retention models by Nikitas and co-workers were evaluated for a small 

temperature interval ( T∆  = 60 °C) using temperature-gradient slopes up to 10 °C min-1. 

Therefore, the retention models described by Nikitas and co-workers should be evaluated 

using a larger temperature interval (e.g. 40 °C to 180 °C) and higher temperature-gradient 

slopes (e.g. 30 °C min-1). Moreover, these investigations should be performed using a high-

temperature column oven such as the HT-HPLC 200 by SIM (Scientific Instruments 

Manufacturer GmbH) or the Polaratherm™ column oven by Selerity Technologies. In 

addition, the retention models described by Nikitas and co-workers have been extended by a 

differential equation to take thermal lag phenomena in the HPLC column and in the column 

oven into account and to improve the accuracy of predicted retention times. This 
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mathematical extension was necessary because of the employed forced-air convection column 

oven during their studies. Therefore, it should be investigated whether this extension is 

necessary if a high-temperature column oven based on block heating is used. It is thinkable 

that in this case, the retention models yield also reliable retention time predictions without the 

extension to take thermal lag phenomena into account. In other words, it seems possible that 

the retention models can be simplified. 

Overall, the presented work clearly underlines that the adapted linear elution strength model is 

well suited to assist the practitioner during systematic method development in temperature 

programming liquid chromatography. In other words, using the hyphenation techniques where 

temperature programming is absolutely mandatory such as LC taste or LC-IRMS, the user has 

now a powerful tool for a systematic and time-saving method development.  
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startφ  concentration of the organic modifier in the mobile phase at the start of 
the solvent gradient 
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