29 research outputs found

    Micro Cantilever Movement Detection with an Amorphous Silicon Array of Position Sensitive Detectors

    Get PDF
    The movement of a micro cantilever was detected via a self constructed portable data acquisition prototype system which integrates a linear array of 32 1D amorphous silicon position sensitive detectors (PSD). The system was mounted on a microscope using a metal structure platform and the movement of the 30 μm wide by 400 μm long cantilever was tracked by analyzing the signals acquired by the 32 sensor array electronic readout system and the relevant data algorithm. The obtained results show a linear behavior of the photocurrent relating X and Y movement, with a non-linearity of about 3%, a spatial resolution of less than 2 μm along the lateral dimension of the sensor as well as of less than 3 μm along the perpendicular dimension of the sensor, when detecting just the micro-cantilever, and a spatial resolution of less than 1 μm when detecting the holding structure

    A randomized phase 2 study of paclitaxel and carboplatin with or without conatumumab for first-line treatment of advanced non-small-cell lung cancer

    Get PDF
    Introduction: This study evaluated the efficacy, safety, and pharmacokinetics of conatumumab combined with paclitaxel-carboplatin (PC) as first-line treatment for advanced non-small-cell lung cancer (NSCLC). Methods: Patients (aged >18 years) with previously untreated advanced or recurrent NSCLC were randomized 1: 1: 1 (stratified by Eastern Cooperative Oncology Group performance status and disease stage) to receive up to six 3-week cycles of PC combined with conatumumab (arm 1, 3 mg/kg; arm 2, 15 mg/kg) or placebo (arm 3) every 3 weeks. The primary endpoint was progression-free survival (PFS). This study is registered with ClinicalTrials.gov (NCT00534027). Results: Between August 8, 2007 and April 9, 2009, 172 patients were randomized (arm 1, n = 57; arm 2, n = 56; arm 3, n = 59). Median PFS was 5.4 months (95% confidence interval [CI] 4.1-6.3) in arm 1 (hazard ratio [HR] 0.84 [95% CI 0.57-1.24]; p = 0.41), 4.8 months (95% CI 3.2-6.5) in arm 2 (HR 0.93 [0.64-1.35]; p = 0.57), and 5.5 months (95% CI 4.3-5.7) in arm 3. There was an interaction between tumor histology and the effect of conatumumab on PFS (squamous HR 0.47 [0.23-0.94]; nonsquamous HR 1.08 [0.74-1.57]; interaction p = 0.039). The most common grade of three or more adverse events were neutropenia, anemia, and thrombocytopenia. There was no evidence of pharmacokinetic interactions between conatumumab and PC. Of 158 patients assessable for FCGR3A polymorphisms, conatumumab treatment was associated with a trend toward longer overall survival (HR 0.72 [0.43-1.23]) among V-allele carriers (V/V or F/V; n = 54) but not among F-allele homozygotes (n = 34; HR 1.37 [0.66-2.86]). Conclusion: Although well tolerated, the addition of conatumumab to PC did not improve outcomes in unselected patients with previously untreated advanced NSCLC

    Characterization of nanomaterials in food by electron microscopy

    No full text
    Engineered nanomaterials (ENMs) are increasingly being used in the food industry. In order to assess the efficacy and the risks of these materials, it is essential to have access to methods that not only detect the nanomaterials, but also provide information on the characteristics of the materials (e.g., size and shape). This review presents an overview of electron microscopy (EM)-based methods that have been, or have the potential to be, applied to imaging ENMs in foodstuffs. We provide an overview of approaches to sample preparation, including drying, chemical treatment, fixation and cryogenic methods. We then describe standard and non-standard EM-based approaches that are available for imaging prepared samples. Finally, we present a strategy for selecting the most appropriate method for a particular foodstuff
    corecore