193 research outputs found

    The UFM1 Pathway Impacts HCMV US2-Mediated Degradation of HLA Class I

    Get PDF
    To prevent accumulation of misfolded proteins in the endoplasmic reticulum, chaperones perform quality control on newly translated proteins and redirect misfolded proteins to the cytosol for degradation by the ubiquitin-proteasome system. This pathway is called ER-associated protein degradation (ERAD). The human cytomegalovirus protein US2 induces accelerated ERAD of HLA class I molecules to prevent immune recognition of infected cells by CD8(+) T cells. Using US2-mediated HLA-I degradation as a model for ERAD, we performed a genome-wide CRISPR/Cas9 library screen to identify novel cellular factors associated with ERAD. Besides the identification of known players such as TRC8, p97, and UBE2G2, the ubiquitin-fold modifier1 (UFM1) pathway was found to affect degradation of HLA-I. UFMylation is a post-translational modification resembling ubiquitination. Whereas we observe ubiquitination of HLA-I, no UFMylation was detected on HLA-I or several other proteins involved in degradation of HLA-I, suggesting that the UFM1 pathway impacts ERAD in a different manner than ubiquitin. Interference with the UFM1 pathway seems to specifically inhibit the ER-to-cytosol dislocation of HLA-I. In the absence of detectable UFMylation of HLA-I, UFM1 may contribute to US2-mediated HLA-I degradation by misdirecting protein sorting indirectly. Mass spectrometry analysis of US2-expressing cells showed that ribosomal proteins are a major class of proteins undergoing extensive UFMylation; the role of these changes in protein degradation may be indirect and remains to be established

    Varicellovirus UL 49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP

    Get PDF
    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I–restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed

    Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle

    Get PDF
    gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle

    Ubiquitylation in ERAD: Reversing to Go Forward?

    Get PDF
    Proteins are co-translationally inserted into the endoplasmic reticulum (ER) where they undergo maturation. Homeostasis in the ER requires a highly sensitive and selective means of quality control. This occurs through ER-associated degradation (ERAD).This complex ubiquitin-proteasome–mediated process involves ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3),lumenal and cytosolic chaperones, and other proteins, including the AAA ATPase p97 (VCP; Cdc48 in yeast). Probing of processes involving proteasomal degradation has generally depended on proteasome inhibitors or knockdown of specific E2s or E3s. In this issue of PLoS Biology, Ernst et al. demonstrate the utility of expressing the catalytic domain of a viral deubiquitylating enzyme to probe the ubiquitin system. Convincing evidence is provided that deubiquitylation is integral to dislocation of ERAD substrates from the ER membrane. The implications of this work for understanding ERAD and the potential of expressing deubiquitylating enzyme domains for studying ubiquitin-mediated processes are discussed

    Сетевая система контроля технологического процесса выращивания полупроводниковых кристаллов и тонких пленок

    Get PDF
    Экспериментальное моделирование аппаратно-программного обеспечения показало достаточную надежность работы системы и значительное уменьшение трудоемкости контроля и управления параметрами технологического процесса

    Toward a theory of repeat purchase drivers for consumer services

    Get PDF
    The marketing discipline’s knowledge about the drivers of service customers’ repeat purchase behavior is highly fragmented. This research attempts to overcome that fragmented state of knowledge by making major advances toward a theory of repeat purchase drivers for consumer services. Drawing on means–end theory, the authors develop a hierarchical classification scheme that organizes repeat purchase drivers into an integrative and comprehensive framework. They then identify drivers on the basis of 188 face-to-face laddering interviews in two countries (USA and Germany) and assess the drivers’ importance and interrelations through a national probability sample survey of 618 service customers. In addition to presenting an exhaustive and coherent set of hierarchical repeat-purchase drivers, the authors provide theoretical explanations for how and why drivers relate to one another and to repeat purchase behavior. This research also tests the boundary conditions of the proposed framework by accounting for different service types. In addition to its theoretical contribution, the framework provides companies with specific information about how to manage long-term customer relationships successfully

    Enzymatic Blockade of the Ubiquitin-Proteasome Pathway

    Get PDF
    Ubiquitin-dependent processes control much of cellular physiology. We show that expression of a highly active, Epstein-Barr virus-derived deubiquitylating enzyme (EBV-DUB) blocks proteasomal degradation of cytosolic and ER-derived proteins by preemptive removal of ubiquitin from proteasome substrates, a treatment less toxic than the use of proteasome inhibitors. Recognition of misfolded proteins in the ER lumen, their dislocation to the cytosol, and degradation are usually tightly coupled but can be uncoupled by the EBV-DUB: a misfolded glycoprotein that originates in the ER accumulates in association with cytosolic chaperones as a deglycosylated intermediate. Our data underscore the necessity of a DUB activity for completion of the dislocation reaction and provide a new means of inhibition of proteasomal proteolysis with reduced cytotoxicity.National Institutes of Health (U.S.)EMBO (long term Fellowship 2008-379)Boehringer Ingelheim Fond

    Keep them alive! Design and Evaluation of the “Community Fostering Reference Model”

    Get PDF
    Firms host online communities for commercial purposes, for example in order to integrate customers into ideation for new product development. The success of these firm-hosted online communities depends entirely on the cooperation of a high number of customers that constantly produce valuable knowledge for firms. However, in practice, the majority of successfully implemented communities suffers from stagnation and even a decrease of member activities over time. Literature provides numerous guidelines on how to build and launch these online communities. While these models describe the initial steps of acquiring and activating a community base from scratch very well and explicitly, they neglect continuous member activation and acquistion after a successful launch. Against this background, the authors propose the Community Fostering Reference Model (CoFoRM), which represents a set of general procedures and instruments to continuously foster member activity. In this paper, the authors present the theory-driven design as well as the evaluation of the CoFoRM in a practical use setting. The evaluation results reveal that the CoFoRM represents a valuable instrument in the daily working routine of community managers, since it efficiently helps activating community members especially in the late phases of a community’s LifeCycle
    corecore