450 research outputs found

    Application of ERTS-A imagery to fracture related mine safety hazards in the coal mining industry

    Get PDF
    The author has identified the following significant results. The most important result to date is the demonstration of the special value of repetitive ERTS-1 multiband coverage for detecting previously unknown fracture lineaments despite the presence of a deep glacial overburden. The Illinois Basin is largely covered with glacial drift and few rock outcrops are present. A contribution to the geological understanding of Illinois and Indiana has been made. Analysis of ERTS-1 imagery has provided useful information to the State of Indiana concerning the surface mined lands. The contrast between healthy vegetation and bare ground as imaged by Band 7 is sharp and substantial detail can be obtained concerning the extent of disturbed lands, associated water bodies, large haul roads, and extent of mined lands revegetation. Preliminary results of analysis suggest a reasonable correlation between image-detected fractures and mine roof fall accidents for a few areas investigated. ERTS-1 applications to surface mining operations appear probable, but further investigations are required. The likelihood of applying ERTS-1 derived fracture data to improve coal mine safety in the entire Illinois Basin is suggested from studies conducted in Indiana

    Experimental Investigation of Compressible Boundary Layers under the Influence of Pressure Gradients

    Get PDF
    This study examined the effect of mild pressure gradients on the mean and turbulent flow of high-speed boundary layers. Three Mach numbers (1.7, 3.0 and 5.0) were investigated. Three pressure gradients were examined; a zero pressure gradient (ZPG), a favorable pressure gradient (FPG), and a combined pressure gradient (CPG). The CPG consisted of an adverse pressure gradient followed by a favorable pressure gradient. Conventional pressure probes, hot-wire and particle image velocimetry (PIV) were used to examine the flow. Measurement included mean velocity, velocity turbulence intensity, mass flux turbulence intensity and energy spectra. Instantaneous (10 nsec) Mie scattering flow visualizations were acquired. Qualitatively, the flow visualizations indicated that the turbulent flow structures were strongly affected by the pressure gradients. For the Mach 2,8 case, the PIV contours and the hot-wire profiles both indicated that the boundary layer thickness increased by 40% and decreased by 100% relative to the ZPG for the favorable and adverse pressure gradients, respectively. Further, the PIV and hot-wire data indicated that the axial turbulence intensity levels increased by 22% for the CPG and decreased by 25% for the FPG. The energy spectra data indicated that once a pressure gradient was applied (favorable or adverse) the low frequency energy increased followed by a rapid decay. Lastly, it was found that nominally 20 to 30 PIV images were sufficient for mean flow boundary layer velocities, but 93 images (the maximum recorded in this study) were insufficient to adequately resolve Reynolds shear stresses

    Formulas establish audio range inductance in beryllium coils

    Get PDF
    Mathematical modeling is used to determine the effects of resistance and capacitance upon the audio-inductance range of beryllium hammer coils and beryllium nylon-potted coils

    Fracture mapping and strip mine inventory in the Midwest by using ERTS-1 imagery

    Get PDF
    Analysis of the ERTS-1 imagery and high-altitude infrared photography indicates that useful fracture data can be obtained in Indiana and Illinois despite a glacial till cover. ERTS MSS bands 5 and 7 have proven most useful for fracture mapping in coal-bearing rocks in this region. Preliminary results suggest a reasonable correlation between image-detected fractures and mine roof-fall accidents. Information related to surface mined land, such as disturbed area, water bodies, and kind of reclamation, has been derived from the analysis of ERTS imagery

    Application of EREP imagery to fracture-related mine safety hazards and environmental problems in mining

    Get PDF
    The author has identified the following significant results. All Skylab 2 imagery received to date has been analyzed manually and data related to fracture analysis and mined land inventories has been summarized on map-overlays. A comparison of the relative utility of the Skylab image products for fracture detection, soil tone/vegetation contrast mapping, and mined land mapping has been completed. Numerous fracture traces were detected on both color and black and white transparencies. Unique fracture trace data which will contribute to the investigator's mining hazards analysis were noted on the EREP imagery; these data could not be detected on ERTS-1 imagery or high altitude aircraft color infrared photography. Stream segments controlled by fractures or joint systems could be identified in more detail than with ERTS-1 imagery of comparable scale. ERTS-1 mine hazards products will be modified to demonstrate the value of this additional data. Skylab images were used successfully to update a mined land map of Indiana made in 1972. Changes in mined area as small as two acres can be identified. As the Energy Crisis increases the demand for coal, such demonstrations of the application of Skylab data to coal resources will take on new importance

    Non-malleability for quantum public-key encryption

    Get PDF
    Non-malleability is an important security property for public-key encryption (PKE). Its significance is due to the fundamental unachievability of integrity and authenticity guarantees in this setting, rendering it the strongest integrity-like property achievable using only PKE, without digital signatures. In this work, we generalize this notion to the setting of quantum public-key encryption. Overcoming the notorious "recording barrier" known from generalizing other integrity-like security notions to quantum encryption, we generalize one of the equivalent classical definitions, comparison-based non-malleability, and show how it can be fulfilled. In addition, we explore one-time non-malleability notions for symmetric-key encryption from the literature by defining plaintext and ciphertext variants and by characterizing their relation

    Relationship of roof falls in underground coal mines to fractures mapped on ERTS-1 imagery

    Get PDF
    ERTS imagery is of unique value for mapping of certain fractures that are not identifiable on aircraft imagery. Because color infrared and ERTS imagery complement each other both sources of data were used to map fractures in western Indiana and eastern Illinois. In the Kings Station Mine, Gibson County, Indiana, most roof falls reported had occurred in areas where mapped fractures were closely spaced and intersecting. Using this information as a basis for extrapolation, roof fall hazard maps were prepared for other mine sites. Various coal resources programs related to energy and environment also were conducted

    Application of EREP imagery to fracture-related mine safety hazards in coal mining and mining-environmental problems in Indiana

    Get PDF
    The author has identified the following significant results. This investigation evaluated the applicability of a variety of sensor types, formats, and resolution capabilities to the study of both fuel and nonfuel mined lands. The image reinforcement provided by stereo viewing of the EREP images proved useful for identifying lineaments and for mined lands mapping. Skylab S190B color and color infrared transparencies were the most useful EREP imagery. New information on lineament and fracture patterns in the bedrock of Indiana and Illinois extracted from analysis of the Skylab imagery has contributed to furthering the geological understanding of this portion of the Illinois basin

    Active Damping Using Distributed Anisotropic Actuators

    Get PDF
    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure
    • …
    corecore