399 research outputs found

    The spliceosome as target for anticancer treatment

    Get PDF
    The spliceosome is a ribonucleoprotein complex involved in RNA splicing, that is, the removal of non-coding introns from precursor messenger RNA. (Alternative) Splicing events may play an essential role in tumourigenesis. The recent discovery that the spliceosome is a target for novel compounds with anticancer activity opens up new therapeutic avenues

    In-doped Sb nanowires grown by MOCVD for high speed phase change memories

    Get PDF
    We investigated the Phase Change Memory (PCM) capabilities of In-doped Sb nanowires (NWs) with diameters of (20-40) nm, which were self-assembled by Metalorganic Chemical Vapor Deposition (MOCVD) via the vapor-liquid-solid (VLS) mechanism. The PCM behavior of the NWs was proved, and it was shown to have relatively low reset power consumption (~ 400 μW) and fast switching capabilities with respect to standard Ge-Sb-Te based devices. In particular, reversible set and reset switches by voltage pulses as short as 25 ns were demonstrated. The obtained results are useful for understanding the effects of downscaling in PCM devices and for the exploration of innovative PCM architectures and materials

    In-doped Sb nanowires grown by MOCVD for high speed phase change memories

    Get PDF
    We investigated the Phase Change Memory (PCM) capabilities of In-doped Sb nanowires (NWs) with diameters of (20-40) nm, which were self-assembled by Metalorganic Chemical Vapor Deposition (MOCVD) via the vapor-liquid-solid (VLS) mechanism. The PCM behavior of the NWs was proved, and it was shown to have relatively low reset power consumption (~ 400 μW) and fast switching capabilities with respect to standard Ge-Sb-Te based devices. In particular, reversible set and reset switches by voltage pulses as short as 25 ns were demonstrated. The obtained results are useful for understanding the effects of downscaling in PCM devices and for the exploration of innovative PCM architectures and materials. Keywords: Phase change memories, Nanowires, MOCVD, In-Sb, TEM, XR

    Uncovering the Signaling Landscape Controlling Breast Cancer Cell Migration Identifies Novel Metastasis Driver Genes

    Get PDF
    Ttriple-negative breast cancer (TNBC) is an aggressive and highly metastatic breast cancer subtype. Enhanced TNBC cell motility is a prerequisite of TNBC cell dissemination. Here, we apply an imaging-based RNAi phenotypic cell migration screen using two highly motile TNBC cell lines (Hs578T and MDA-MB-231) to provide a repository of signaling determinants that functionally drive TNBC cell motility. We have screened ~4,200 target genes individually and discovered 133 and 113 migratory modulators of Hs578T and MDA-MB-231, respectively, which are linked to signaling networks predictive for breast cancer progression. The splicing factors PRPF4B and BUD31 and the transcription factor BPTF are essential for cancer cell migration, amplified in human primary breast tumors and associated with metastasis-free survival. Depletion of PRPF4B, BUD31 and BPTF causes primarily down regulation of genes involved in focal adhesion and ECM-interaction pathways. PRPF4B is essential for TNBC metastasis formation in vivo, making PRPF4B a candidate for further drug developmen

    Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer

    Get PDF
    Background: MicroRNAs (MiRNAs) are short non-coding RNAs that control protein expression through various mechanisms. Their altered expression has been shown to be associated with various cancers. The aim of this study was to profile miRNA expression in colorectal cancer (CRC) and to analyze the function of specific miRNAs in CRC cells. MirVana miRNA Bioarrays were used to determine the miRNA expression profile in eight CRC cell line models, 45 human CRC samples of different stages, and four matched normal colon tissue samples. SW620 CRC cells were stably transduced with miR-143 or miR-145 expression vectors and analyzed in vitro for cell proliferation, cell differentiation and anchorage-independent growth. Signalling pathways associated with differentially expressed miRNAs were identified using a gene set enrichment analysis. Results: The expression analysis of clinical CRC samples identified 37 miRNAs that were differentially expressed between CRC and normal tissue. Furthermore, several of these miRNAs were associated with CRC tumor progression including loss of miR-133a and gain of miR-224. We identified 11 common miRNAs that were differentially expressed between normal colon and CRC in both the cell line models and clinical samples. In vitro functional studies indicated that miR-143 and miR-145 appear to function in opposing manners to either inhibit or augment cell proliferation in a metastatic CRC model. The pathways targeted by miR-143 and miR-145 showed no significant overlap. Furthermore, gene expression analysis of metastatic versus non-metastatic isogenic cell lines indicated that miR-145 targets involved in cell cycle and neuregulin pathways were significantly down-regulated in the metastatic context. Conclusion: MiRNAs showing altered expression at different stages of CRC could be targets for CRC therapies and be further developed as potential diagnostic and prognostic analytes. The identified biological processes and signalling pathways collectively targeted by co-expressed miRNAs in CRC provide a basis for understanding the functional role of miRNAs in cancer. © 2009 Arndt et al; licensee BioMed Central Ltd

    Recruitment of the Major Vault Protein by InlK: A Listeria monocytogenes Strategy to Avoid Autophagy

    Get PDF
    L. monocytogenes is a facultative intracellular bacterium responsible for listeriosis. It is able to invade, survive and replicate in phagocytic and non-phagocytic cells. The infectious process at the cellular level has been extensively studied and many virulence factors have been identified. Yet, the role of InlK, a member of the internalin family specific to L. monocytogenes, remains unknown. Here, we first show using deletion analysis and in vivo infection, that InlK is a bona fide virulence factor, poorly expressed in vitro and well expressed in vivo, and that it is anchored to the bacterial surface by sortase A. We then demonstrate by a yeast two hybrid screen using InlK as a bait, validated by pulldown experiments and immunofluorescence analysis that intracytosolic bacteria via an interaction with the protein InlK interact with the Major Vault Protein (MVP), the main component of cytoplasmic ribonucleoproteic particules named vaults. Although vaults have been implicated in several cellular processes, their role has remained elusive. Our analysis demonstrates that MVP recruitment disguises intracytosolic bacteria from autophagic recognition, leading to an increased survival rate of InlK over-expressing bacteria compared to InlK− bacteria. Together these results reveal that MVP is hijacked by L. monocytogenes in order to counteract the autophagy process, a finding that could have major implications in deciphering the cellular role of vault particles
    • …
    corecore