27 research outputs found

    Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales

    Get PDF
    Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model was able to explain most of the variability in GEP at hourly (R2 = 0.77) to interannual (R2 = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). This work highlights the importance of accounting for differential regulation of GEP at different timescales and of identifying the underlying feedbacks and adaptive mechanisms

    Modelling the Radiative Effects of Biomass Burning Aerosols on Carbon Fluxes in the Amazon Region

    Get PDF
    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry/biomass-burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of the global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that the biomass burning aerosols led to increases of about 27% of gross primary productivity of Amazonia, 10% of plant respiration and a decline in soil respiration of 3%. Consequently, in our model Amazonia, became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50% - 50% between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and Savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase of aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high biomass burning aerosol loads, changing from being a source to being a sink of CO2 to the atmosphere

    Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    Get PDF
    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amaz么nia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change. 漏 2016 by the American Association for the Advancement of Science; all rights reserved

    Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    No full text
    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amaz么nia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change

    Aerosol Particles in Amazonia: Their Composition, Role in the Radiation Balance, Cloud Formation, and Nutrient Cycles

    No full text
    The atmosphere above tropical forests plays a very active part in the biogeochemical cycles that are critically important for the processes that maintain the ecosystem, including processes involving the vegetation, soil, hydrology, and atmospheric composition. Aerosol particles control key ingredients of the climatic and ecological environment in Amazonia. The radiative balance is strongly influenced by the direct and indirect radiative forcing of aerosol particles. Nutrient cycling is partially controlled by dry and wet deposition of key plant nutrients. It was observed that the aerosol particles that act as cloud condensation nuclei influence cloud formation and dynamics, having the potential to change precipitation regimes over Amazonia. The 10-year-long record of aerosol optical thickness measurements in Amazonia shows a strongly negative radiative forcing of -37 W m-2 averaged over 7 years of dry season measurements in Alta Floresta. There is a strong influence of biomass-burning aerosols on the cloud microphysical properties during the dry season. The connections between the amount of aerosol particles and carbon uptake trough photosynthesis highlighted the close connection between forest natural processes and the aerosol loading in the atmosphere. Climate change combined with socioeconomic drivers could alter significantly the emission of trace gases, aerosols, and water vapor fluxes from the forest to the atmosphere. It is a vital task to quickly reduce Amazonian deforestation rates, and to implement solid and long-term conservation policies in Amazonia. 漏 2009 by the American Geophysical Union. All rights reserved

    Aerosol particles in Amazonia: Their composition, role in the radiation balance, cloud formation, and nutrient cycles

    No full text
    The atmosphere above tropical forests plays a very active part in the biogeochemical cycles that are critically important for the processes that maintain the ecosystem, including processes involving the vegetation, soil, hydrology, and atmospheric composition. Aerosol particles control key ingredients of the climatic and ecological environment in Amazonia. The radiative balance is strongly influenced by the direct and indirect radiative forcing of aerosol particles. Nutrient cycling is partially controlled by dry and wet deposition of key plant nutrients. It was observed that the aerosol particles that act as cloud condensation nuclei influence cloud formation and dynamics, having the potential to change precipitation regimes over Amazonia. The 10-year-long record of aerosol optical thickness measurements in Amazonia shows a strongly negative radiative forcing of -37 W m-2 averaged over 7 years of dry season measurements in Alta Floresta. There is a strong influence of biomass-burning aerosols on the cloud microphysical properties during the dry season. The connections between the amount of aerosol particles and carbon uptake trough photosynthesis highlighted the close connection between forest natural processes and the aerosol loading in the atmosphere. Climate change combined with socioeconomic drivers could alter significantly the emission of trace gases, aerosols, and water vapor fluxes from the forest to the atmosphere. It is a vital task to quickly reduce Amazonian deforestation rates, and to implement solid and long-term conservation policies in Amazonia. 漏 Copyright 2009 by the American Geophysical Union

    Carbon exchange in an Amazon forest: from hours to years

    Get PDF
    In Amazon forests, the relative contributions of climate, phenology, and disturbance to net ecosystem exchange of carbon (NEE) are not well understood. To partition influences across various timescales, we use a statistical model to represent eddy-covariance-derived NEE in an evergreen eastern Amazon forest as a constant response to changing meteorology and phenology throughout a decade. Our best fit model represented hourly NEE variations as changes due to sunlight, while seasonal variations arose from phenology influencing photosynthesis and from rainfall influencing ecosystem respiration, where phenology was asynchronous with dry-season onset. We compared annual model residuals with biometric forest surveys to estimate impacts of drought disturbance. We found that our simple model represented hourly and monthly variations in NEE well (R-2 = 0.81 and 0.59, respectively). Modeled phenology explained 1% of hourly and 26% of monthly variations in observed NEE, whereas the remaining modeled variability was due to changes in meteorology. We did not find evidence to support the common assumption that the forest phenology was seasonally light-or water-triggered. Our model simulated annual NEE well, with the exception of 2002, the first year of our data record, which contained 1.2 MgCha(-1) of residual net emissions, because photosynthesis was anomalously low. Because a severe drought occurred in 1998, we hypothesized that this drought caused a persistent, multi-year depression of photosynthesis. Our results suggest drought can have lasting impacts on photosynthesis, possibly via partial damage to still-living trees.National Science Foundation PIRE fellowship [OISE 0730305]; US Department of Energy grant [DE-SC0008311]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts

    No full text
    The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence.We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajos (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition.The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2-7yr, depending upon soil texture and leaf phenology.From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss >20% in 50yr according to ED2 predictions. Nearly 25% (1.8 million km(2)) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2 sigma. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100
    corecore