
NE membrane (Fig. 3, D and E). The cytoplasm
contains filaments of the cell’s cytoskeleton, dis-
tinguishable according to size and morphology:
actin fibers with a helical pitch, smooth inter-
mediate filaments of variable diameters, and 13-
protofilamentmicrotubules (Fig. 3E and fig. S10).
Occasionally, actin filaments formed direct phys-
ical connections to NPCs (Fig. 3E). With the NPCs
embedded within the stiff lamina on one side
and directly connected to the cytoskeleton on the
other, it becomes feasible to comprehend how
NPC diameter may differ considerably upon the
action of mechanical forces.
In conclusion, the volumes reconstructed from

these data reveal that many macromolecular
complexes can be visually recognized without
the need for computational averaging approaches
and provide insight into structural variations at
the level of individual complexes. Assisted by the
synergistic application of recent technical devel-
opments, cryo-ET holds promise for revealing the
molecular organization giving rise to cellular
function in unperturbed environments.
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FOREST ECOLOGY

Leaf development and demography
explain photosynthetic seasonality in
Amazon evergreen forests
Jin Wu,1* Loren P. Albert,1 Aline P. Lopes,2 Natalia Restrepo-Coupe,1,3

Matthew Hayek,4 Kenia T. Wiedemann,1,4 Kaiyu Guan,5,6 Scott C. Stark,7

Bradley Christoffersen,1,8 Neill Prohaska,1 Julia V. Tavares,2 Suelen Marostica,2

Hideki Kobayashi,9 Mauricio L. Ferreira,10,11 Kleber Silva Campos,12 Rodrigo da Silva,12

Paulo M. Brando,13,14 Dennis G. Dye,15 Travis E. Huxman,16 Alfredo R. Huete,3

Bruce W. Nelson,2 Scott R. Saleska1*

In evergreen tropical forests, the extent,magnitude, and controls on photosynthetic seasonality
are poorly resolved and inadequately represented in Earth system models. Combining camera
observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in
Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the
primary cause of photosynthetic seasonality in these forests. Specifically, synchronization
of new leaf growth with dry season litterfall shifts canopy composition toward younger,
more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem
photosynthesis. Coordinated leaf development and demography thus reconcile seemingly
disparate observations at different scales and indicate that accounting for leaf-level phenology
is critical for accurately simulating ecosystem-scale responses to climate change.

T
he seasonal rhythm of ecosystemmetabolism—
the aggregatedphotosynthesis, transpiration,
or respirationof all organisms ina landscape—
emerges from interactions among climate,
ecology of individuals and communities, and

biosphere-atmosphere exchange (1). In temper-
ate zones, seasonality of terrestrial production
drives annual oscillations in atmospheric carbon
dioxide (2). In the tropics, plant transpiration
seasonality mediates tropical convection and the
timing of dry-to-wet season transitions—a poten-
tially important climate feedback (3).
Seasonality in temperate zones is tightly linked

to plant phenology (4) (the timing of periodic life-
cycle events, including leaf development and
senescence), which in turn is synchronized by cold-
season dormancy (4). However, the extent, mag-
nitude, and controls on seasonality of ecosystem
metabolism in year-round warm tropical ever-
green forest systems are less clear (5–7). For
example,most current Earth systemmodels repre-
sent little or no phenology in evergreen tropical
biomes, so any seasonality in photosynthetic flux
that emerges is due to seasonality in climatic dri-
vers (8–10).However, remote-sensing observations
(5–7, 11–13) suggest that central Amazon forests

seasonally increase their photosynthetic capacity
(“green-up”) during dry seasons, whereas south-
ern Amazon and African tropical forests show
declines (13). There is extensive debate over the
mechanisms driving these patterns (including
whether they might be remote-sensing artifacts)
(5–7) and how they might be modeled (8–10, 14).
To determine the extent of seasonality in

tropical ecosystem photosynthesis (or gross eco-
system productivity, GEP), and to develop a
more mechanistic understanding of how it
emerges from climatic and biological processes,
we address two key questions: (i) What is the rel-
ative importance of climatic drivers versus plant
phenology in controlling GEP seasonality? (ii)
What are the mechanisms by which these fac-
tors exert control? These questions conceptualize
GEP as potentially driven by climate variability
(e.g., temperature, light, or water) interacting
with fixed photosynthetic infrastructure (e.g.,
leaf surface area, leaf photosynthetic capacity),
or alternatively, by variability in that photo-
synthetic infrastructure, or some combination
of the two.
To evaluate the first question, we compared

GEP seasonality (derived from eddy covariance
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measurements of ecosystem CO2 exchange) to
candidate explanatory variables at four Amazon
sites distributed across gradients in rainfall and
taxonomic composition. These variables include
(i) five key climatic variables (15) and (ii) a metric
of aggregate forest canopyphenology. Thephenology
metric—ecosystem-scale photosynthetic capacity
(PC)—is an estimate of photosynthetic infra-
structure independent of environment, derived

by averaging the amount of photosynthesis per
unit of incoming light, under fixed reference
climatic conditions (15).
We found that GEP was strongly seasonal at

all sites, but was not consistently driven by cli-
mate variability (Fig. 1 and table S4). Instead,
GEP consistently tracked PC seasonality across
all four sites (coefficient of determination R2 =
0.82 – 0.92; Fig. 1), notably including both water-
sufficient sites (Fig. 1, A to C), which increase
photosynthesis (i.e., “green-up”) in the dry season,
and awater-limited site (Fig. 1D), which decreases
photosynthesis in the dry season. PC phenology
thus appears to be the primary driver of GEP
seasonality in these forests. This contrasts with
most ecosystemmodels, which represent tropical
evergreen forests’ GEP seasonality as arising pri-
marily from climate variability interacting with
aseasonal photosynthetic infrastructure (8, 10).
It also contrasts with observations at shorter
diel time scales, during which large GEP changes
closely track light levels (photosynthetically active
radiation, PAR), whereas PC remains fixed (fig. S11).
We then evaluated the second question: What

are the mechanisms driving seasonal changes
in PC? We first used tower-mounted cameras—
widely used in temperate zones (16), but not
previously in the tropics (15)—to observe dynam-
ics of leaf quantity metrics in three forests (the
drier k67 site near Santarém, the wetter k34 site
near Manaus, and ATTO in between Santarém
and Manaus; fig. S1).
We found that seasonality in camera-derived

leaf area index (LAI) (15) (figs. S5 and S8) and in
the fraction of PAR absorbed by leaves (FAPAR)—

common biotic drivers in photosynthesis models—
were insufficient to account for PC seasonality at
the two sites with long-term eddy flux measure-
ments (Fig. 2, A to D). Though LAI and FAPAR
significantly increased during dry seasons at
both sites, their increases preceded PC by at
least 1 month, and their relative amplitudes were
much smaller than that of PC, which increased
proportionally twice as much as LAI and 10 times
more than FAPAR. Thus, typical photosynthesis
models, which predict that changes in GEP are
driven by proportional changes either in PAR
(climate) or in FAPAR (biology), would not be
able to represent observed photosynthetic sea-
sonality of these forests.
In addition, remotely sensed vegetationactivity—

as observed by the Enhanced Vegetation Index
fromModerate-Resolution Imaging Spectroradio-
meter (MODIS) [MAIACEVI, rigorously corrected
for clouds, aerosols, and Sun-angle artifacts (17)]—
closely tracked the magnitude and timing of LAI
seasonality (Fig. 2, A to D). In sum, though phe-
nological metrics of leaf quantity from multiple
platforms (ground, tower, and satellite) all showed
consistent dry-season increases in the central
Amazon, these increases were systematically
too small to explain the variation in PC that we
found is responsible for GEP dynamics in these
forests (Fig. 2, C and D).
Next, investigating effects of leaf quality (photo-

synthetic capacity per leaf area) (9, 11, 18), we
found that increasing leaf losses (litterfall) during
dry seasons are more than compensated by sim-
ultaneous increases in new leaf production (Fig.
2, E and F). This dynamic drives net increases in
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Fig. 1. Gross ecosystem productivity (GEP) seasonality at four Amazon
forests is highly correlated with seasonality in intrinsic canopy photo-
synthetic capacity (PC), but not with seasonality in climatic driving
variables (rainfall and photosynthetically active radiation, PAR). Flux
tower sites are in three equatorial forests: (A) Tapajós National Forest
(k67 site near Santarém); (B) Cuieiras Reserve (k34 site near Manaus);

(C) Caxiuana National Forest (CAX near Belem); and in one southern (10°S)
forest, (D) the Jaru Reserve (RJA) (15). Monthly values of GEP, PC, and PAR
are averages from 2002–2005 and 2009–2011 at k67 (n = 7 years), 1999–
2006 at k34 (n = 8), 1999–2003 at CAX (n = 4), and 1999–2002 at RJA (n = 3).
Error bars are ± 1 SEM. MAP, mean annual precipitation. Shading indicates
dry seasons.
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LAI, but also significantly shifts the age compo-
sition of these canopies toward younger leaves,
which should have higher average “quality” than
the older leaves they replace (11, 19).
To test whether simultaneous changes in

leaf quantity and quality could account for the
large variations in PC and thus GEP, we rep-
resented their dynamics in a “leaf demography-
ontogeny model” (15) (fig. S10). In this model,
demography partitions leaf quantity (LAI) into
separate age classes, and ontogeny (leaf develop-
ment) assigns a different “leaf quality” (photo-
synthetic capacity) to each age class, and these
jointly determine ecosystem PC. Driven by new
leaf production (assumed to contribute only to
young LAI) and by ground-observed litterfall
(assumed to come only from old LAI), and con-
strained tomatch themean seasonality of camera-

observed total LAI, the model is fit by adjusting
parameters of leaf aging and leaf quality (15)
(fig. S10) to optimize the match between simu-
lated and observed PC at the k67 site (Fig. 3A).
Optimized PC simulations closely tracked ob-

served PC at k67 (R2 = 0.91; Fig. 3A, upper panel),
which rose and fell with the simulated abundance
of the mature (3 to 5 months old) age class (Fig.
3A, lower panel). This correspondence indi-
cates that the mature leaves have the highest
photosynthetic capacity and explains the time
lag between PC and total LAI (Fig. 2, A and B)
as a consequence of leaf maturation time [the
time to transition from young (LAIY) to mature
(LAIM), fig. S10]. A sensitivity analysis showed
that varying leaf quality alone could explain
about twice as much seasonal variation in eco-
system PC as leaf quantity alone, consistent with

a previous simpler analysis at a single site near
k67 (11). The same leaf demography-ontogeny
model [using the same parameters fit for k67, but
driven by local k34 LAI and litterfall and scaled
so that their mean values match (15)] well pre-
dicted seasonality of ecosystem PC (R2 = 0.89;
Fig. 3B, upper panel) at k34 nearManaus, 600 km
away, with a shorter dry season and more rain-
fall. That it does this without reparameterization
strongly supports leaf demography and ontogeny
as general mechanisms of photosynthetic sea-
sonality in central Amazonian forests.
For validation, we found that simulated sea-

sonality of young leaves matches ground-based
observations of leaf flushing rates (12) (Fig. 4A,
R2 = 0.95) and that differences with age among
model-fitted leaf-level photosynthetic parame-
terswere consistentwith field-measuredmaximum
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[at both (A) k67, a long dry-season forest near Santarem, and (B) k34, a short
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carboxylation rates (Vcmax) across these age
classes (Fig. 4B). These results substantially
advance previous work (11) by showing that a
common phenologicalmechanism operates across
the central Amazonian rainfall gradient, and by
demonstrating this mechanism with a model
that could be used to represent leaf demography
in larger ecosystem models.

Our study provides evidence that despite
enormous biodiversity (20), synchronization
of leaf phenology patterns among leaf flush-
ing species and at different sites (hundreds of
kilometers distant) is sufficient to drive con-
vergent ecosystem-scale seasonal patterns of
forest productivity. Such dynamics are not easily
captured by standard phenology metrics (LAI,

FAPAR, or satellite vegetation indices like EVI),
but are evidently critical for understanding mech-
anisms underlying evergreen tropical forest func-
tional dynamics.
This work has two implications for under-

standing controls on tropical forest photosynthesis.
First, it reconciles much-debated discrepancies
between different spatial scales of observation.
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For example, previous work at k67 (21) reported
little seasonality in leaf-scale photosynthetic
parameters, concluding that leaf-level produc-
tivity did not explain seasonality of ecosystem
productivity. However, that analysis focused on
mature leaves only, neglecting the demography
and ontogeny here shown to be critical for scal-
ing leaf-level photosynthesis to ecosystems.
At larger scales, this study supports the hy-

pothesis that leaf-demographic mechanisms un-
derlie seasonal increases in tropical vegetation
productivity seen from satellites (6, 7, 13). And,
because leaf stomates link evapotranspiration
to photosynthesis, these mechanisms may also
facilitate the dry-season maxima in water fluxes
(fig. S4). By moistening the dry-season atmo-
spheric boundary layer, these fluxes hasten tran-
sition to the wet season ahead of the southward
migration of the intertropical convergence zone
(3). Further, because dry-season water fluxes in
South America may influence the timing of the
North American Monsoon demise (22), tropical
leaf phenology may contribute to important
ecologically mediated teleconnections (23) in the
climate system.
The second implication is that leaf phenology

is needed to correctly detect, attribute, and model
climate sensitivity of tropical forests. Empirical
studies that analyze climatic sensitivity of carbon
and water fluxes without accounting for phe-
nology (24, 25) will misattribute phenological
changes to climatic causes. Models that are tuned
to match current observations while assuming
that LAI or FAPAR are aseasonal risk making
erroneous predictions of forest response to fu-
ture climate changes.
This work highlights the importance of leaf

level phenology—especially coordination of leaf
growth with senescence—in regulating land sur-
face fluxes of carbon andwater, and of associated
feedbacks to climate. The causes of phenological
patterns may arise from adaptive strategies for
avoiding herbivores or pathogens (26) or for op-
timizing plant physiology for carbon gain under
seasonal resource availability (13, 27–29). Ulti-
mately, understanding the evolutionary and phys-
iological basis for phenological mechanisms may
be critical to predicting the long-termresponse and
resiliency of tropical forests to changing climate.
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CIRCADIAN RHYTHMS

Synchronous Drosophila circadian
pacemakers display nonsynchronous
Ca2+ rhythms in vivo
Xitong Liang, Timothy E. Holy, Paul H. Taghert*

In Drosophila, molecular clocks control circadian rhythmic behavior through a network
of ~150 pacemaker neurons. To explain how the network’s neuronal properties encode
time, we performed brainwide calcium imaging of groups of pacemaker neurons in vivo for
24 hours. Pacemakers exhibited daily rhythmic changes in intracellular Ca2+ that were
entrained by environmental cues and timed by molecular clocks. However, these rhythms
were not synchronous, as each group exhibited its own phase of activation. Ca2+ rhythms
displayed by pacemaker groups that were associated with the morning or evening locomotor
activities occurred ~4 hours before their respective behaviors. Loss of the receptor for the
neuropeptide PDF promoted synchrony of Ca2+ waves. Thus, neuropeptide modulation is
required to sequentially time outputs from a network of synchronous molecular pacemakers.

C
ircadian clocks help animals adapt their
physiology and behavior to local time. The
clocks require a highly conserved set of genes
andproteins (1) operating throughmolecular
feedback loops to generate robust rhythms

that produce a 24-hour timing signal (2). These

clocks are expressedby pacemaker neurons, which
themselves are assembled into an interactive net-
work (3). Through network encoding and cellular
interactions, pacemaker neurons in the supra-
chiasmatic nucleus (SCN) of themammalian brain
coordinatemany circadian rhythmic outputs (4–7).
To study howmolecular clocks couple to network
encoding and how network encoding relates
to specific behavioral outputs, we conducted
an in vivo brainwide analysis of the circadian
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Leaf development and demography explain photosynthetic seasonality in Amazon evergreen

Nelson and Scott R. Saleska
Kleber Silva Campos, Rodrigo da Silva, Paulo M. Brando, Dennis G. Dye, Travis E. Huxman, Alfredo R. Huete, Bruce W.
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forests across a gradient of climate zones.
dynamics of photosynthesis in the entire ecosystem. Leaf phenology regulates seasonality of the carbon flux in tropical 

seasonalAccounting for age-dependent variation among individual leaves and crowns is necessary for understanding the 
 flux.2seasonal patterns) of leaf dynamics in tropical tree crowns in Amazonia, Brazil, and relate this to patterns of CO

 use tower-based cameras to detect the phenology (i.e., theet al.the dry season. To investigate this mismatch, Wu 
photosynthesis. Direct measurements in the Amazon, however, show that production remains constant or increases in 

Models assume that lower precipitation in tropical forests means less plant-available water and less
Leaf seasonality in Amazon forests
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