28 research outputs found

    Nuclear Level Density and γ\gamma-ray Strength Function of 63Ni^{63}\mathrm{Ni}

    Full text link
    The nuclear level density (NLD) and γ\gamma-ray strength function (γ\gammaSF) of 63Ni^{63}\mathrm{Ni} have been investigated using the Oslo method. The extracted NLD is compared with previous measurements using particle evaporation and those found from neutron resonance spacing. The γ\gammaSF was found to feature a strong low energy enhancement that could be explained as M1 strength based on large scale shell model calculations. Comparison of γ\gammaSFs measured with the Oslo method for various Ni\mathrm{Ni} isotopes reveals systematic changes to the strength below 55 MeV with increasing mass.Comment: Submitted to Phys. Rev.

    137,138,139^{137,138,139}La(nn, γ\gamma) cross sections constrained with statistical decay properties of 138,139,140^{138,139,140}La nuclei

    Full text link
    The nuclear level densities and γ\gamma-ray strength functions of 138,139,140^{138,139,140}La were measured using the 139^{139}La(3^{3}He, α\alpha), 139^{139}La(3^{3}He, 3^{3}He^\prime) and 139^{139}La(d, p) reactions. The particle-γ\gamma coincidences were recorded with the silicon particle telescope (SiRi) and NaI(Tl) (CACTUS) arrays. In the context of these experimental results, the low-energy enhancement in the A\sim140 region is discussed. The 137,138,139^{137,138,139}La(n,γ)n, \gamma) cross sections were calculated at ss- and pp-process temperatures using the experimentally measured nuclear level densities and γ\gamma-ray strength functions. Good agreement is found between 139^{139}La(n,γ)n, \gamma) calculated cross sections and previous measurements

    Competing particle–hole excitations in ³⁰Na: Constraining state-of-the-art effective interactions

    Get PDF
    The odd–odd nucleus ³⁰Na is studied via a one-proton, one-proton–one-neutron and one-neutron removal reaction using an intermediate-energy ³¹Mg, ³²Mg and ³¹Na radioactive ion beam, respectively. Combining high-resolution γ-ray spectroscopy with the selectivity of the three reaction mechanisms, we are able to distinguish multiple particle–hole configurations. Negative-parity states in ³⁰Na are observed for the first time, providing an important measure of the excitation of the 1p1h/3p3h configuration and hence the sd–pf shell gap. The extracted band structures and level energies serve as invaluable input for the theoretical refinement of the effective interactions used in this region

    Updated Photonuclear Data Library and Database for Photon Strength Functions

    No full text
    Photonuclear cross sections and gamma-ray data used to extract Photon Strength Functions are important for a large range of applications including basic sciences. The recommendations of an IAEA Consultant’s Meeting to update the IAEA Photonuclear Data Library and create a Reference Database for Photon Strength Functions are presented

    Updated Photonuclear Data Library and Database for Photon Strength Functions

    No full text
    Photonuclear cross sections and gamma-ray data used to extract Photon Strength Functions are important for a large range of applications including basic sciences. The recommendations of an IAEA Consultant’s Meeting to update the IAEA Photonuclear Data Library and create a Reference Database for Photon Strength Functions are presented

    Independent normalization for gamma-ray strength functions: The shape method

    No full text
    The shape method, a novel approach to obtain the functional form of the γ-ray strength function (γSF), is introduced. In connection with the Oslo method the slope of the nuclear level density (NLD) and γSF can be obtained simultaneously even in the absence of neutron resonance spacing data. The foundation of the shape method lies in the primary γ-ray transitions which preserve information on the functional form of the γSF. The shape method has been applied to 56Fe, 92Zr, and 164Dy, which are representative cases for the variety of situations encountered in typical NLD and γSF studies. The comparisons of results from the shape method to those from the Oslo method demonstrate that the functional form of the γSF is retained regardless of nuclear structure details or Jπ values of the states fed by the primary transitions

    Encapsulated Sulfur targets for light ion beam experiments

    No full text
    A new method was developed to produce enriched Sulfur targets with minimum loss of material. This was made possible by inserting Sulfur in-between two 0.5 μm Mylar foils (C10H8O4). The initial aim was to ensure that the Sulfur targets reduce by no more than 50% of the initial thickness within 24 hours under the equivalent of 10 J/cm2 of integrated energy deposition by an energetic (Eb > 50 MeV) proton beam. There is no loss of enriched material while making the target, as all the material is deposited within the surface area to be exposed to the beam. During beam irradiation, the targets were frequently swivelled in order to expose each part of the target to the beam and achieve homogeneous irradiation. Targets of 0.4 mg/cm2 thickness were produced and characterised using ion beam analysis technique with a 3 MeV proton beam

    Encapsulated Sulfur targets for light ion beam experiments

    No full text
    International audienceA new method was developed to produce enriched Sulfur targets with minimum loss of material. This was made possible by inserting Sulfur in-between two 0.5 μm Mylar foils (C10H8O4). The initial aim was to ensure that the Sulfur targets reduce by no more than 50% of the initial thickness within 24 hours under the equivalent of 10 J/cm2 of integrated energy deposition by an energetic (Eb > 50 MeV) proton beam. There is no loss of enriched material while making the target, as all the material is deposited within the surface area to be exposed to the beam. During beam irradiation, the targets were frequently swivelled in order to expose each part of the target to the beam and achieve homogeneous irradiation. Targets of 0.4 mg/cm2 thickness were produced and characterised using ion beam analysis technique with a 3 MeV proton beam

    Encapsulated Sulfur targets for light ion beam experiments

    Get PDF
    A new method was developed to produce enriched Sulfur targets with minimum loss of material. This was made possible by inserting Sulfur in-between two 0.5 μm Mylar foils (C10H8O4). The initial aim was to ensure that the Sulfur targets reduce by no more than 50% of the initial thickness within 24 hours under the equivalent of 10 J/cm2 of integrated energy deposition by an energetic (Eb > 50 MeV) proton beam. There is no loss of enriched material while making the target, as all the material is deposited within the surface area to be exposed to the beam. During beam irradiation, the targets were frequently swivelled in order to expose each part of the target to the beam and achieve homogeneous irradiation. Targets of 0.4 mg/cm2 thickness were produced and characterised using ion beam analysis technique with a 3 MeV proton beam
    corecore