22 research outputs found

    The birth of the machista : changing conceptions of the Nicaraguan masculine

    Get PDF
    This thesis examines the concept of masculinity as it concerns a group of male community leaders from impoverished neighbourhoods of LĂ©on, Nicaragua. In collaboration with the non-governmental organization, Centro de InformaciĂłn y Servicios de AsesorĂ­a en Salud (CISAS) and utilizing person-centred ethnography, it explores masculinity in Nicaragua as reflected at the level of the individual. The work proposes that masculinities in Nicaragua are not as simple as some have suggested. Moreover, it relies on a Foucauldian analysis of disciplinary power to explicate the foundations of said conceptions as well as to develop new understandings of the idea of machismo. Following analysis of an interview series and a thorough review of relevant literature, this thesis places Nicaraguan conceptions of masculinity as being discrete according to individuals. Moreover, the work deconstructs the notion of machismo as being nothing more than an individuated subject, most likely imposed on Nicaragua and, by extension, various other Latin American cultures, by forces exogenous to Latin America. Finally, this thesis discusses the tie that masculinity and health have as well as the influence that CISAS has on the personal lives of the research participants as well as their work in their communities

    An Ontology Pattern for Oceanographic Cruises: Towards an Oceanographer\u27s Dream of Integrated Knowledge Discovery

    Get PDF
    EarthCube is a major effort of the National Science Foundation to establish a next-generation knowledge architecture for the broader geosciences. Data storage, retrieval, access, and reuse are central parts of this new effort. Currently, EarthCube is organized around several building blocks and research coordination networks. OceanLink is a semantics enabled building block that aims at improving data retrieval and reuse via ontologies, Semantic Web technologies, and Linked Data for the ocean sciences. Cruises, in the sense of research expeditions, are central events for ocean scientists. Consequently, information about these cruises and the involved vessels has to be shared and made retrievable. For example, the ability to find cruises in the vicinity of physiographic features of interest, e.g., a hydrothermal vent field or a fracture zone, is of primary interest for oceanographers. In this paper, we use a design pattern-centric strategy to engineer ontologies for OceanLink. We provide a formal axiomatization of the introduced patterns and ontologies using the Web Ontology Language, explain design choices, discuss the re-usability of our models, and provide lessons learned for the future geo-ontologies

    Shifting the limits in wheat research and breeding using a fully annotated reference genome

    Get PDF
    Introduction: Wheat (Triticum aestivum L.) is the most widely cultivated crop on Earth, contributing about a fifth of the total calories consumed by humans. Consequently, wheat yields and production affect the global economy, and failed harvests can lead to social unrest. Breeders continuously strive to develop improved varieties by fine-tuning genetically complex yield and end-use quality parameters while maintaining stable yields and adapting the crop to regionally specific biotic and abiotic stresses. Rationale: Breeding efforts are limited by insufficient knowledge and understanding of wheat biology and the molecular basis of central agronomic traits. To meet the demands of human population growth, there is an urgent need for wheat research and breeding to accelerate genetic gain as well as to increase and protect wheat yield and quality traits. In other plant and animal species, access to a fully annotated and ordered genome sequence, including regulatory sequences and genome-diversity information, has promoted the development of systematic and more time-efficient approaches for the selection and understanding of important traits. Wheat has lagged behind, primarily owing to the challenges of assembling a genome that is more than five times as large as the human genome, polyploid, and complex, containing more than 85% repetitive DNA. To provide a foundation for improvement through molecular breeding, in 2005, the International Wheat Genome Sequencing Consortium set out to deliver a high-quality annotated reference genome sequence of bread wheat. Results: An annotated reference sequence representing the hexaploid bread wheat genome in the form of 21 chromosome-like sequence assemblies has now been delivered, giving access to 107,891 high-confidence genes, including their genomic context of regulatory sequences. This assembly enabled the discovery of tissue- and developmental stage–related gene coexpression networks using a transcriptome atlas representing all stages of wheat development. The dynamics of change in complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. Aspects of the future value of the annotated assembly for molecular breeding and research were exemplarily illustrated by resolving the genetic basis of a quantitative trait locus conferring resistance to abiotic stress and insect damage as well as by serving as the basis for genome editing of the flowering-time trait. Conclusion: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding. Importantly, the bioinformatics capacity developed for model-organism genomes will facilitate a better understanding of the wheat genome as a result of the high-quality chromosome-based genome assembly. By necessity, breeders work with the genome at the whole chromosome level, as each new cross involves the modification of genome-wide gene networks that control the expression of complex traits such as yield. With the annotated and ordered reference genome sequence in place, researchers and breeders can now easily access sequence-level information to precisely define the necessary changes in the genomes for breeding programs. This will be realized through the implementation of new DNA marker platforms and targeted breeding technologies, including genome editing

    Collaborative research : EarthCube building blocks, leveraging semantics and linked data for geoscience data sharing and discovery, OceanLink

    No full text
    The OceanLink EarthCube project will apply state-of-the-art Semantic Web Technologies to support data representation, discovery, analysis, sharing, and integration of datasets from the global oceans, and related resources including meeting abstracts and library holdings. Ships are a principal platform from which a wide spectrum of oceanographic data are collected. At the University of Maryland, Baltimore County, semantic relationships will be extracted from text for use in developing methods that efficiently identify relationships across distributed oceanographic datasets. At Wright State University integration of disparate data will occur by refining and applying leading edge technology from the Semantic Web, ontologies, and linked data. From the MBLWHOI Library, DSpace content will be published as Linked Open Data, providing relationships between oceanographic datasets, publications, conference presentations, and funded National Science Foundation projects. Teams of researchers at the Lamont-Doherty Earth Observatory and the Woods Hole Oceanographic Institution will develop Use Cases that represent the needs of the oceanographic research community and will publish oceanographic dataset catalogs as Linked Open Data. A key contribution will be semantically-enabled cyberinfrastructure components capable of automated data integration across distributed repositories. These efforts will ultimately lead to generalized computational techniques applicable to all of EarthCube

    The GeoLink Modular Oceanography Ontology

    No full text
    GeoLink is one of the building block projects within EarthCube, a major effort of the National Science Foundation to establish a next-generation knowledge infrastructure for geosciences. As part of this effort, GeoLink aims to improve data retrieval, reuse, and integration of seven geoscience data repositories through the use of ontologies. In this paper, we report on the GeoLink modular ontology, which consists of an interlinked collection of ontology design patterns engineered as the result of a collaborative modeling effort. We explain our design choices, present selected modeling details, and discuss how data integration can be achieved using the patterns while respecting the existing heterogeneity within the participating repositories

    GeoLink Triple Store Data

    No full text
    A growing collection of standard protocols, formats, and vocabularies, often characterized as the Semantic Web, offers a powerful approach for publishing research data online. The GeoLink project brings together experts from the geosciences, computer science, and library science in an effort to develop Semantic Web components that support discovery and reuse of data and knowledge. GeoLink's participating repositories include content from field expeditions, laboratory analyses, journal publications, conference presentations, theses/reports, and funding awards that span scientific studies from marine geology to marine ecosystems and biogeochemistry to paleoclimatology. One of the outcomes of this project is a network of Linked Data published by participating repositories using those ODPs, and tools to facilitate discovery of related content in multiple repositories. This item will be versioned periodically as the data is re-harvested and processed. The live dataset is currently available for query at http://data.geolink.org/sparql. A demo data application is available at http://demo.geolink.org/.This work is sponsored by NSF-1440114 and the EarthCube program
    corecore