321 research outputs found

    Monitoring of immune activation using biochemical changes in a porcine model of cardiac arrest.

    Get PDF
    In animal models, immune activation is often difficult to assess because of the limited availability of specific assays to detect cytokine activities. In human monocytes/macrophages, interferon-gamma induces increased production of neopterin and an enhanced activity of indoleamine 2,3-dioxygenase, which degrades tryptophan via the kynurenine pathway. Therefore, monitoring of neopterin concentrations and of tryptophan degradation can serve to detect the extent of T helper cell 1-type immune activation during cellular immune response in humans. In a porcine model of cardiac arrest, we examined the potential use of neopterin measurements and determination of the tryptophan degradation rate as a means of estimating the extent of immune activation. Urinary neopterin concentrations were measured with high-performance liquid chromatography (HPLC) and radioimmunoassay (RIA) (BRAHMS Diagnostica, Berlin, Germany). Serum and plasma tryptophan and kynurenine concentrations were also determined using HPLC. Serum and urine neopterin concentrations were not detectable with HPLC in these specimens, whereas RIA gave weakly (presumably false) positive results. The mean serum tryptophan concentration was 39.0 +/- 6.2 micromol/l, and the mean kynurenine concentration was 0.85 +/- 0.33 micromol/l. The average kynurenine-per-tryptophan quotient in serum was 21.7 +/- 8.4 nmol/micromol, and that in plasma was 20.7 +/- 9.5 nmol/micromol (n = 7), which corresponds well to normal values in humans. This study provides preliminary data to support the monitoring of tryptophan degradation but not neopterin concentrations as a potential means of detecting immune activation in a porcine model. The kynurenine-per-tryptophan quotient may serve as a short-term measurement of immune activation and hence permit an estimate of the extent of immune activation

    Penicillamine should not be used as initial therapy in Wilson's disease

    Full text link
    No abstract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34958/1/1002_ftp.pd

    In vitro template-change PCR to create single crossover libraries: a case study with B. thuringiensis Cry2A toxins

    Get PDF
    During evolution the creation of single crossover chimeras between duplicated paralogous genes is a known process for increasing diversity. Comparing the properties of homologously recombined chimeras with one or two crossovers is also an efficient strategy for analyzing relationships between sequence variation and function. However, no well-developed in vitro method has been established to create single-crossover libraries. Here we present an in vitro template-change polymerase change reaction that has been developed to enable the production of such libraries. We applied the method to two closely related toxin genes from B. thuringiensis and created chimeras with differing properties that can help us understand how these toxins are able to differentiate between insect species

    Alloimmunisation to Donor Antigens and Immune Rejection Following Foetal Neural Grafts to the Brain in Patients with Huntington's Disease

    Get PDF
    BACKGROUND: The brain is deemed “immunologically privileged” due to sparse professional antigen-presenting cells and lymphatic drainage, and to the blood-brain barrier. Although the actual extent of this privilege is controversial, there is general consensus about the limited need in intracerebral neural grafts for immunosuppressive regimens comparable to those used in other cases of allotransplantation. This has led over the past fifteen years to the use of either short-term or even no immunosuppression in most clinical trials with foetal neural transplant in patients with Parkinson's and Huntington's disease. METHODOLOGY/PRINCIPAL FINDINGS: We report biological demonstration of alloimmunisation without signs of rejection in four grafted patients out of 13 studied during the course of a clinical trial involving fetal neural transplantation in patients with Huntington's Disease. Biological, radiological and clinical demonstration of an ongoing rejection process was observed in a fifth transplanted patient. The rejection process was, however, fully reversible under immunosuppressive treatment and graft activity recovered within six months. CONCLUSIONS/SIGNIFICANCE: There had been, up to date, no report of documented cases that could have cast a doubt on those procedures. Our results underline the need for a reconsideration of the extent of the so-called immune privilege of the brain and of the follow-up protocols of patients with intracerebral grafts. It also suggests that some of the results obtained in past studies with foetal neural transplants may have been biased by an unrecognized immune response to donor cells

    Designing stem-cell-based dopamine cell replacement trials for Parkinson's disease

    Get PDF
    Clinical studies of Parkinson’s disease (PD) using a dopamine cell replacment strategy have been tried for more than 30 years. The outcomes following transplantation of human fetal ventral mesencephalic tissue (hfVM) have been variable, with some patients coming off their anti-PD treatment for many years and others not responding and/or developing significant side effects, including graft-induced dyskinesia. This led to a re-appraisal of the best way to do such trials, which resulted in a new European-Union-funded allograft trial with fetal dopamine cells across several centers in Europe. This new trial, TRANSEURO (NCT01898390), is an open-label study in which some individuals in a large observational cohort of patients with mild PD who were undergoing identical assessments were randomly selected to receive transplants of hfVM. The TRANSEURO trial is currently ongoing as researchers have completed both recruitment into a large multicenter observational study of younger onset early-stage PD and transplantation of hfVM in 11 patients. While completion of TRANSEURO is not expected until 2021, we feel that sharing the rationale for the design of TRANSEURO, along with the lessons we have learned along the way, can help inform researchers and facilitate planning of transplants of dopamine-producing cells derived from human pluripotent stem cells for future clinical trials
    • 

    corecore