2,190 research outputs found
Differing results obtained in the doping of semiconductors by energetic ions
Conflicting results have been reported on the doping of semiconductors by energetic ions. The purpose of this communication is to call attention to certain experimental parameters which are important in resolving these discrepancies
On number fields with nontrivial subfields
What is the probability for a number field of composite degree to have a
nontrivial subfield? As the reader might expect the answer heavily depends on
the interpretation of probability. We show that if the fields are enumerated by
the smallest height of their generators the probability is zero, at least if
. This is in contrast to what one expects when the fields are enumerated
by the discriminant. The main result of this article is an estimate for the
number of algebraic numbers of degree and bounded height which generate
a field that contains an unspecified subfield of degree . If
we get the correct asymptotics as the height tends to
infinity
Two-dimensional Lattice Gauge Theories with Superconducting Quantum Circuits
A quantum simulator of U(1) lattice gauge theories can be implemented with
superconducting circuits. This allows the investigation of confined and
deconfined phases in quantum link models, and of valence bond solid and spin
liquid phases in quantum dimer models. Fractionalized confining strings and the
real-time dynamics of quantum phase transitions are accessible as well. Here we
show how state-of-the-art superconducting technology allows us to simulate
these phenomena in relatively small circuit lattices. By exploiting the strong
non-linear couplings between quantized excitations emerging when
superconducting qubits are coupled, we show how to engineer gauge invariant
Hamiltonians, including ring-exchange and four-body Ising interactions. We
demonstrate that, despite decoherence and disorder effects, minimal circuit
instances allow us to investigate properties such as the dynamics of electric
flux strings, signaling confinement in gauge invariant field theories. The
experimental realization of these models in larger superconducting circuits
could address open questions beyond current computational capability.Comment: Published versio
Irreversible reorganization in a supercooled liquid originates from localised soft modes
The transition of a fluid to a rigid glass upon cooling is a common route of
transformation from liquid to solid that embodies the most poorly understood
features of both phases1,2,3. From the liquid perspective, the puzzle is to
understand stress relaxation in the disordered state. From the perspective of
solids, the challenge is to extend our description of structure and its
mechanical consequences to materials without long range order. Using computer
simulations, we show that the localized low frequency normal modes of a
configuration in a supercooled liquid are causally correlated to the
irreversible structural reorganization of the particles within that
configuration. We also demonstrate that the spatial distribution of these soft
local modes can persist in spite of significant particle reorganization. The
consequence of these two results is that it is now feasible to construct a
theory of relaxation length scales in glass-forming liquids without recourse to
dynamics and to explicitly relate molecular properties to their collective
relaxation.Comment: Published online: 20 July 2008 | doi:10.1038/nphys1025 Available from
http://www.nature.com/nphys/journal/v4/n9/abs/nphys1025.htm
Do regions matter in ALICE?: Social relationships and data exchanges in the Grid
This study aims at investigating the impact of regional affiliations of centres on the organisation of collaborations within the Distributed Computing ALICE infrastructure, based on social networks methods. A self-administered questionnaire was sent to all centre managers about support, email interactions and wished collaborations in the infrastructure. Several additional measures, stemming from technical observations were collected, such as bandwidth, data transfers and Internet Round Trip Time (RTT) were also included. Information for 50 centres were considered (about 70% response rate). Empirical analysis shows that despite the centralisation on CERN, the network is highly organised by regions. The results are discussed in the light of policy and efficiency issue
Analysis of fast turbulent reconnection with self-consistent determination of turbulence timescale
We present results of Reynolds-averaged turbulence model simulation on the
problem of magnetic reconnection. In the model, in addition to the mean
density, momentum, magnetic field, and energy equations, the evolution
equations of the turbulent cross-helicity , turbulent energy and its
dissipation rate are simultaneously solved to calculate the rate
of magnetic reconnection for a Harris-type current sheet. In contrast to
previous works based on algebraic modeling, the turbulence timescale is
self-determined by the nonlinear evolutions of and , their
ratio being a timescale. We compare the reconnection rate produced by our
mean-field model to the resistive non-turbulent MHD rate. To test whether
different regimes of reconnection are produced, we vary the initial strength of
turbulent energy and study the effect on the amount of magnetic flux
reconnected in time.Comment: 10 pages, 7 figure
Dynamic facilitation explains democratic particle motion of metabasin transitions
Transitions between metabasins in supercooled liquids seem to occur through
rapid "democratic" collective particle rearrangements. Here we show that this
apparent homogeneous particle motion is a direct consequence of dynamic
facilitation. We do so by studying metabasin transitions in facilitated spin
models and constrained lattice gases. We find that metabasin transitions occur
through a sequence of locally facilitated events taking place over a relatively
short time frame. When observed on small enough spatial windows these events
appear sudden and homogeneous. Our results indicate that metabasin transitions
are essentially "non-democratic" in origin and yet another manifestation of
dynamical heterogeneity in glass formers.Comment: 6 pages, 6 figure
Antimicrobial Treatment of Orthopedic Implant-related Infections with Rifampin Combinations
The purpose of this prospective clinical study is to evaluate the role of combination chemotherapy with rifampin in the treatment of orthopedic device—related infections in which the implant could not be removed. Eleven patients with orthopedic implant-related infections due to staphylococci or streptococci were treated with the implant in situ. Each antimicrobial regimen included rifampin in combination with a β-lactam antibiotic or ciprofloxacin. The median duration of treatment with rifampin was 86 days (range, 15-336 days) with a median follow-up of >;24 months after cessation of therapy. Treatment was successful for 82% of patients. Failures were associated with documented inappropriate treatment. These preliminary clinical data are supported by data from in vitro studies and animal experiments. Combination therapy with rifampin, in particular rifampin and a quinolone, should be considered for patients with orthopedic implant-related infections if the implant cannot be remove
- …