129 research outputs found

    Interactive process mining of cancer treatment sequences with melanoma real-world data.

    Get PDF
    The growing availability of clinical real-world data (RWD) represents a formidable opportunity to complement evidence from randomized clinical trials and observe how oncological treatments perform in real-life conditions. In particular, RWD can provide insights on questions for which no clinical trials exist, such as comparing outcomes from different sequences of treatments. To this end, process mining is a particularly suitable methodology for analyzing different treatment paths and their associated outcomes. Here, we describe an implementation of process mining algorithms directly within our hospital information system with an interactive application that allows oncologists to compare sequences of treatments in terms of overall survival, progression-free survival and best overall response. As an application example, we first performed a RWD descriptive analysis of 303 patients with advanced melanoma and reproduced findings observed in two notorious clinical trials: CheckMate-067 and DREAMseq. Then, we explored the outcomes of an immune-checkpoint inhibitor rechallenge after a first progression on immunotherapy versus switching to a BRAF targeted treatment. By using interactive process-oriented RWD analysis, we observed that patients still derive long-term survival benefits from immune-checkpoint inhibitors rechallenge, which could have direct implications on treatment guidelines for patients able to carry on immune-checkpoint therapy, if confirmed by external RWD and randomized clinical trials. Overall, our results highlight how an interactive implementation of process mining can lead to clinically relevant insights from RWD with a framework that can be ported to other centers or networks of centers

    Child maltreatment and NR3C1 exon 1F methylation, link with deregulated hypothalamus-pituitary-adrenal axis and psychopathology: A systematic review

    Full text link
    Background Epigenetics offers one promising method for assessing the psychobiological response to stressful experiences during childhood. In particular, deoxyribonucleic acid (DNA) methylation has been associated with an altered hypothalamus–pituitary–adrenal (HPA) axis and the onset of mental disorders. Equally, there are promising leads regarding the association between the methylation of the glucocorticoid receptor gene (NR3C1-1F) and child maltreatment and its link with HPA axis and psychopathology. Objective The current study aimed to assess the evidence of a link among child maltreatment, NR3C1-1F methylation, HPA axis deregulation, and symptoms of psychopathology. Methods We followed the Prisma guidelines and identified 11 articles that met our inclusion criteria. Results We found that eight studies (72.72%) reported increased NR3C1-1F methylation associated with child maltreatment, specifically physical abuse, emotional abuse, sexual abuse, neglect, and exposure to intimate partner violence, while three studies (27.27%) found no significant association. Furthermore, a minority of studies (36.36%) provided additional measures of symptoms of psychopathology or cortisol in order to examine the link among NR3C1-1F methylation, HPA axis deregulation, and psychopathology in a situation of child maltreatment. These results suggest that NR3C1-1F hypermethylation is positively associated with higher HPA axis activity, i.e. increased production of cortisol, as well as symptoms of psychopathology, including emotional lability-negativity, externalizing behavior symptoms, and depressive symptoms. Conclusion NR3C1-1F methylation could be one mechanism that links altered HPA axis activity with the development of psychopathology

    Trametinib Induces the Stabilization of a Dual GNAQ p.Gly48Leu- and FGFR4 p.Cys172Gly-Mutated Uveal Melanoma. The Role of Molecular Modelling in Personalized Oncology.

    Get PDF
    We report a case of an uveal melanoma patient with GNAQ p.Gly48Leu who responded to MEK inhibition. At the time of the molecular analysis, the pathogenicity of the mutation was unknown. A tridimensional structural analysis showed that Gα <sub>q</sub> can adopt active and inactive conformations that lead to substantial changes, involving three important switch regions. Our molecular modelling study predicted that GNAQ p.Gly48Leu introduces new favorable interactions in its active conformation, whereas little or no impact is expected in its inactive form. This strongly suggests that GNAQ p.Gly48Leu is a possible tumor-activating driver mutation, consequently triggering the MEK pathway. In addition, we also found an FGFR4 p.Cys172Gly mutation, which was predicted by molecular modelling analysis to lead to a gain of function by impacting the Ig-like domain 2 folding, which is involved in FGF binding and increases the stability of the homodimer. Based on these analyses, the patient received the MEK inhibitor trametinib with a lasting clinical benefit. This work highlights the importance of molecular modelling for personalized oncology

    Selective Affimers Recognise the BCL‐2 Family Proteins BCL‐xL and MCL‐1 through Noncanonical Structural Motifs

    Get PDF
    The BCL‐2 family is a challenging group of proteins to target selectively due to sequence and structural homologies across the family. Selective ligands for the BCL‐2 family regulators of apoptosis are useful as probes to understand cell biology and apoptotic signalling pathways, and as starting points for inhibitor design. We have used phage display to isolate Affimer reagents (non‐antibody‐binding proteins based on a conserved scaffold) to identify ligands for MCL‐1, BCL‐xL, BCL‐2, BAK and BAX, then used multiple biophysical characterisation methods to probe the interactions. We established that purified Affimers elicit selective recognition of their target BCL‐2 protein. For anti‐apoptotic targets BCL‐xL and MCL‐1, competitive inhibition of their canonical protein‐protein interactions is demonstrated. Co‐crystal structures reveal an unprecedented mode of molecular recognition; where a BH3 helix is normally bound, flexible loops from the Affimer dock into the BH3 binding cleft. Moreover, the Affimers induce a change in the target proteins towards a desirable drug‐bound‐like conformation. These proof‐of‐concept studies indicate that Affimers could be used as alternative templates to inspire the design of selective BCL‐2 family modulators and more generally other protein‐protein interaction inhibitors

    Systematic comparison with autoimmune liver disease identifies specific histological features of immune checkpoint inhibitor-related adverse events.

    Get PDF
    Immune checkpoint inhibitors (ICIs) have become a mainstay of cancer treatment. Their immune-boosting quality has one major drawback, their proclivity to induce a broad array of immune-related adverse events (irAEs) affecting, among others, the liver and sharing some similarities with classic autoimmune liver diseases (AILD).We aimed to compare clinical, laboratory and histological features of patients with liver-related irAEs and AILD. We systematically compared liver irAEs with AILD, namely autoimmune hepatitis (AIH) and primary biliary cholangitis, regarding their clinical, laboratory, and histological features. Twenty-seven patients with liver irAEs (ICI group) and 14 patients with AILD were identified. We observed three distinct ICI-induced histological liver injury patterns: hepatitic (52%), cholangitic (19%), and mixed (29%). When comparing the ICI and AILD groups, centrilobular injury as well as granuloma formation were more prevalent in the former (p=0.067 and 0.002, respectively). CD4+/CD8+ T cell ratios were heterogeneous between the two groups, without statistically significant difference but with a trend toward increased CD8+ T cells among hepatitic irAEs as compared with AIH. Pattern of liver function test alteration was predictive for the type of irAEs but did not correlate with histological severity. Liver irAEs have broad clinical, laboratory and histological presentations. Histological features of irAEs and AILD are distinct, likely underpinning their different immunological mechanisms

    De novo design of protein logic gates

    Get PDF
    The design of modular protein logic for regulating protein function at the posttranscriptional level is a challenge for synthetic biology. Here, we describe the design of two-input AND, OR, NAND, NOR, XNOR, and NOT gates built from de novo–designed proteins. These gates regulate the association of arbitrary protein units ranging from split enzymes to transcriptional machinery in vitro, in yeast and in primary human T cells, where they control the expression of the TIM3 gene related to T cell exhaustion. Designed binding interaction cooperativity, confirmed by native mass spectrometry, makes the gates largely insensitive to stoichiometric imbalances in the inputs, and the modularity of the approach enables ready extension to three-input OR, AND, and disjunctive normal form gates. The modularity and cooperativity of the control elements, coupled with the ability to de novo design an essentially unlimited number of protein components, should enable the design of sophisticated posttranslational control logic over a wide range of biological functions

    The Arabidopsis BLAP75/Rmi1 Homologue Plays Crucial Roles in Meiotic Double-Strand Break Repair

    Get PDF
    In human cells and in Saccharomyces cerevisiae, BLAP75/Rmi1 acts together with BLM/Sgs1 and TopoIIIα/Top3 to maintain genome stability by limiting crossover (CO) formation in favour of NCO events, probably through the dissolution of double Holliday junction intermediates (dHJ). So far, very limited data is available on the involvement of these complexes in meiotic DNA repair. In this paper, we present the first meiotic study of a member of the BLAP75 family through characterisation of the Arabidopsis thaliana homologue. In A. thaliana blap75 mutants, meiotic recombination is initiated, and recombination progresses until the formation of bivalent-like structures, even in the absence of ZMM proteins. However, chromosome fragmentation can be detected as soon as metaphase I and is drastic at anaphase I, while no second meiotic division is observed. Using genetic and imunolocalisation studies, we showed that these defects reflect a role of A. thaliana BLAP75 in meiotic double-strand break (DSB) repair—that it acts after the invasion step mediated by RAD51 and associated proteins and that it is necessary to repair meiotic DSBs onto sister chromatids as well as onto the homologous chromosome. In conclusion, our results show for the first time that BLAP75/Rmi1 is a key protein of the meiotic homologous recombination machinery. In A. thaliana, we found that this protein is dispensable for homologous chromosome recognition and synapsis but necessary for the repair of meiotic DSBs. Furthermore, in the absence of BLAP75, bivalent formation can happen even in the absence of ZMM proteins, showing that in blap75 mutants, recombination intermediates exist that are stable enough to form bivalent structures, even when ZMM are absent

    Different Mi-2 Complexes for Various Developmental Functions in Caenorhabditis elegans

    Get PDF
    Biochemical purifications from mammalian cells and Xenopus oocytes revealed that vertebrate Mi-2 proteins reside in multisubunit NuRD (Nucleosome Remodeling and Deacetylase) complexes. Since all NuRD subunits are highly conserved in the genomes of C. elegans and Drosophila, it was suggested that NuRD complexes also exist in invertebrates. Recently, a novel dMec complex, composed of dMi-2 and dMEP-1 was identified in Drosophila. The genome of C. elegans encodes two highly homologous Mi-2 orthologues, LET-418 and CHD-3. Here we demonstrate that these proteins define at least three different protein complexes, two distinct NuRD complexes and one MEC complex. The two canonical NuRD complexes share the same core subunits HDA-1/HDAC, LIN-53/RbAp and LIN-40/MTA, but differ in their Mi-2 orthologues LET-418 or CHD-3. LET-418 but not CHD-3, interacts with the Krüppel-like protein MEP-1 in a distinct complex, the MEC complex. Based on microarrays analyses, we propose that MEC constitutes an important LET-418 containing regulatory complex during C. elegans embryonic and early larval development. It is required for the repression of germline potential in somatic cells and acts when blastomeres are still dividing and differentiating. The two NuRD complexes may not be important for the early development, but may act later during postembryonic development. Altogether, our data suggest a considerable complexity in the composition, the developmental function and the tissue-specificity of the different C. elegans Mi-2 complexes
    corecore