398 research outputs found

    Global monitoring of tropospheric water vapor with GPS radio occultation aboard CHAMP

    Full text link
    The paper deals with application of GPS radio occultation (RO) measurements aboard CHAMP for the retrieval of tropospheric water vapor profiles. The GPS RO technique provides a powerful tool for atmospheric sounding which requires no calibration, is not affected by clouds, aerosols or precipitation, and provides an almost uniform global coverage. We briefly overview data processing and retrieval of vertical refractivity, temperature and water vapor profiles from GPS RO observations. CHAMP RO data are available since 2001 with up to 200 high resolution atmospheric profiles per day. Global validation of CHAMP water vapor profiles with radiosonde data reveals a bias of about 0.2 g/kg and a standard deviation of less than 1 g/kg specific humidity in the lower troposphere. We demonstrate potentials of CHAMP RO retrievals for monitoring the mean tropospheric water vapor distribution on a global scale.Comment: 7 pages, 4 figure

    GPS radio occultation with CHAMP: monitoring of climate change parameters

    No full text
    International audienceThe Global Positioning System (GPS) radio occultation (RO) technique offers a valuable new data source for global and continuous monitoring of the Earth's atmosphere. Refractivity, temperature and water vapor profiles with high accuracy and vertical resolution can be derived from this method. The GPS RO technique requires no calibration, is not affected by clouds, aerosols or precipitation, and the occultations are almost uniformly distributed over the globe. In this paper the potential of GPS RO for monitoring of the temperature is demonstrated exemplarily for the tropical upper troposphere and lower stratosphere (UTLS) region using GPS RO data from the German CHAMP (CHAllenging Minisatellite Payload) satellite mission. In addition, results of a 1DVAR retrieval scheme to derive tropospheric water vapor profiles using ECMWF data as background will be discussed. CHAMP RO data are available since 2001 with up to 200 high resolution temperature profiles per day. The temperature bias between CHAMP temperature profiles and radiosonde data as well as ECMWF analyses is less than 0.5 K between 300?30 hPa. The CHAMP RO experiment generates the first long-term RO data set. Other satellite missions will follow (GRACE, TerraSAR-X, COSMIC, METOP) generating some thousand profiles of atmospheric parameters daily

    GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters

    Get PDF
    In this study the global lapse-rate tropopause (LRT) pressure, temperature, potential temperature, and sharpness are discussed based on Global Positioning System (GPS) radio occultations (RO) from the German CHAMP (CHAllenging Minisatellite Payload) and the U.S.-Argentinian SAC-C (Satelite de Aplicaciones Cientificas-C) satellite missions. Results with respect to seasonal variations are compared with operational radiosonde data and ECMWF (European Centre for Medium-Range Weather Forecast) operational analyses. Results on the tropical quasi-biennial oscillation (QBO) are updated from an earlier study. CHAMP RO data are available continuously since May 2001 with on average 150 high resolution temperature profiles per day. SAC-C data are available for several periods in 2001 and 2002. In this study temperature data from CHAMP for the period May 2001-December 2004 and SAC-C data from August 2001-October 2001 and March 2002-November 2002 were used, respectively. The bias between GPS RO temperature profiles and radiosonde data was found to be less than 1.5K between 300 and 10hPa with a standard deviation of 2-3K. Between 200-20hPa the bias is even less than 0.5K (2K standard deviation). The mean deviations based on 167699 comparisons between CHAMP/SAC-C and ECMWF LRT parameters are (-2.1±37.1)hPa for pressure and (0.1±4.2)K for temperature. Comparisons of LRT pressure and temperature between CHAMP and nearby radiosondes (13230) resulted in (5.8±19.8)hPa and (-0.1±3.3)K, respectively. The comparisons between CHAMP/SAC-C and ECMWF show on average the largest differences in the vicinity of the jet streams with up to 700m in LRT altitude and 3K in LRT temperature, respectively. The CHAMP mission generates the first long-term RO data set. Other satellite missions will follow (GRACE, COSMIC, MetOp, TerraSAR-X, EQUARS) generating together some thousand temperature profiles daily

    GNSS-based water vapor estimation and validation during the MOSAiC expedition

    Get PDF
    Within the transpolar drifting expedition MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate), the Global Navigation Satellite System (GNSS) was used among other techniques to monitor variations in atmospheric water vapor. Based on 15 months of continuously tracked GNSS data including GPS, GLONASS and Galileo, epoch-wise coordinates and hourly zenith total delays (ZTDs) were determined using a kinematic precise point positioning (PPP) approach. The derived ZTD values agree to 1.1 ± 0.2 mm (root mean square (rms) of the differences 10.2 mm) with the numerical weather data of ECMWF's latest reanalysis, ERA5, computed for the derived ship's locations. This level of agreement is also confirmed by comparing the on-board estimates with ZTDs derived for terrestrial GNSS stations in Bremerhaven and Ny-Ålesund and for the radio telescopes observing very long baseline interferometry in Ny-Ålesund. Preliminary estimates of integrated water vapor derived from frequently launched radiosondes are used to assess the GNSS-derived integrated water vapor estimates. The overall difference of 0.08 ± 0.04 kg m−2 (rms of the differences 1.47 kg m−2) demonstrates a good agreement between GNSS and radiosonde data. Finally, the water vapor variations associated with two warm-air intrusion events in April 2020 are assessed

    Prevalence of Non-O157:H7 Shiga Toxin-Producing \u3ci\u3eEscherichia coli\u3c/i\u3e in Diarrheal Stool Samples from Nebraska

    Get PDF
    We determined the prevalence of Shiga toxin-producing Escherichia coli (STEC) in diarrheal stool samples from Nebraska by three methods: cefixime-tellurite sorbitol MacConkey (CT-SMAC) culture, enterohemorrhagic E. coli (EHEC) enzyme immunoassay, and stx1,2 polymerase chain reaction (PCR). Fourteen (4.2%) of 335 specimens were positive by at least one method (CT-SMAC culture [6 of 14], EHEC enzyme immunoassay [13 of 14], stx1,2 PCR [14 of 14]). Six contained serogroup 0157, while non-0157 were as prevalent as 0157 serogroups

    Data intensive scientific analysis with grid computing

    Get PDF
    At the end of September 2009, a new Italian GPS receiver for radio occultation was launched from the Satish Dhawan Space Center (Sriharikota, India) on the Indian Remote Sensing OCEANSAT-2 satellite. The Italian Space Agency has established a set of Italian universities and research centers to implement the overall processing radio occultation chain. After a brief description of the adopted algorithms, which can be used to characterize the temperature, pressure and humidity, the contribution will focus on a method for automatic processing these data, based on the use of a distributed architecture. This paper aims at being a possible application of grid computing for scientific research

    Prevalence of non-O157:H7 shiga toxin-producing Escherichia coli in diarrheal stool samples from Nebraska.

    Get PDF
    We determined the prevalence of Shiga toxin-producing Escherichia coli (STEC) in diarrheal stool samples from Nebraska by three methods: cefixime-tellurite sorbitol MacConkey (CT- SMAC) culture, enterohemorrhagic E. coli (EHEC) enzyme immunoassay, and stx1,2 polymerase chain reaction (PCR). Fourteen (4.2%) of 335 specimens were positive by at least one method (CT-SMAC culture [6 of 14], EHEC enzyme immunoassay [13 of 14], stx1,2 PCR [14 of 14]). Six contained serogroup O157, while non-O157 were as prevalent as O157 serogroups

    Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode

    Get PDF
    Slant-integrated water vapor (SIWV) data derived from GPS STDs (slant total delays), which provide the spatial information on tropospheric water vapor, have a high potential for assimilation to weather models or for nowcasting or reconstruction of the 3-D humidity field with tomographic techniques. Therefore, the accuracy of GPS STD is important, and independent observations are needed to estimate the quality of GPS STD. In 2012 the GFZ (German Research Centre for Geosciences) started to operate a microwave radiometer in the vicinity of the Potsdam GPS station. The water vapor content along the line of sight between a ground station and a GPS satellite can be derived from GPS data and directly measured by a water vapor radiometer (WVR) at the same time. In this study we present the validation results of SIWV observed by a ground-based GPS receiver and a WVR. The validation covers 184 days of data with dry and wet humidity conditions. SIWV data from GPS and WVR generally show good agreement with a mean bias of −0.4 kg m−2 and an rms (root mean square) of 3.15 kg m−2. The differences in SIWV show an elevation dependent on an rms of 7.13 kg m−2 below 15° but of 1.76 kg m−2 above 15°. Nevertheless, this elevation dependence is not observed regarding relative deviations. The relation between the differences and possible influencing factors (elevation angles, pressure, temperature and relative humidity) are analyzed in this study. Besides the elevation, dependencies between the atmospheric humidity conditions, temperature and the differences in SIWV are found

    Rapid and accurate simultaneous determination of abamectin and ivermectin in bovine milk by high performance liquid chromatography with fluorescence detection

    Full text link
    An analytical method using high performance liquid chromatography with fluorescence detection for the simultaneous determination of abamectin and ivermectin in bovine milk was developed and validated. The best recovery results were achieved by using acetonitrile for extraction of the compounds followed by solid phase extraction in cartridges containing C18 for the purification of the extract. Pre-column derivatization was accomplished with N-methylimidazole and trifluoroacetic anhydride. The method limit of detection (LOD) values for abamectin and ivermectin were 0.10 and 0.14 µg L-1 and the limit of quantification (LOQ) values were 0.18 and 0.36 µg L-1, respectively. The recoveries were from 75 to 101%, with RSD values lower than 10%. The LOD and LOQ values are lower than the maximum residue limits (MRLs) in milk established by Codex Alimentarius, European Union and the Brazilian legislation
    corecore