67 research outputs found

    Selective Interaction of Syntaxin 1A with KCNQ2: Possible Implications for Specific Modulation of Presynaptic Activity

    Get PDF
    KCNQ2/KCNQ3 channels are the molecular correlates of the neuronal M-channels, which play a major role in the control of neuronal excitability. Notably, they differ from homomeric KCNQ2 channels in their distribution pattern within neurons, with unique expression of KCNQ2 in axons and nerve terminals. Here, combined reciprocal coimmunoprecipitation and two-electrode voltage clamp analyses in Xenopus oocytes revealed a strong association of syntaxin 1A, a major component of the exocytotic SNARE complex, with KCNQ2 homomeric channels resulting in a ∼2-fold reduction in macroscopic conductance and ∼2-fold slower activation kinetics. Remarkably, the interaction of KCNQ2/Q3 heteromeric channels with syntaxin 1A was significantly weaker and KCNQ3 homomeric channels were practically resistant to syntaxin 1A. Analysis of different KCNQ2 and KCNQ3 chimeras and deletion mutants combined with in-vitro binding analysis pinpointed a crucial C-terminal syntaxin 1A-association domain in KCNQ2. Pull-down and coimmunoprecipitation analyses in hippocampal and cortical synaptosomes demonstrated a physical interaction of brain KCNQ2 with syntaxin 1A, and confocal immunofluorescence microscopy showed high colocalization of KCNQ2 and syntaxin 1A at presynaptic varicosities. The selective interaction of syntaxin 1A with KCNQ2, combined with a numerical simulation of syntaxin 1A's impact in a firing-neuron model, suggest that syntaxin 1A's interaction is targeted at regulating KCNQ2 channels to fine-tune presynaptic transmitter release, without interfering with the function of KCNQ2/3 channels in neuronal firing frequency adaptation

    DNA probes in human disease.

    No full text
    Nucleic acid probes are able to detect the presence of particular sequences in a sample down to the level of a few hundred molecules. They can discriminate between similar sequences to a resolution of better than one part in 10(9). They are capable of detecting inherited defects in tissues where the phenotype is not being expressed, and in cases where the biochemical aberration is not understood. They can characterize acquired diseases in somatic cells (both tumours and infectious agents). Additionally, they can be used to characterize multifactorial (either polygenic or requiring an environmental stimulus to interact with a genetic predisposition) diseases. Nucleic acid 'fingerprints' provide an unequivocal identification of the origin of cells which may be applied in criminal law, civil law, and in the follow up to bone marrow transplants. In spite of this tremendous potential, there is still a large gap between their use in research laboratories and their widespread application in pathology laboratories. There are two basic reasons for this. The first is the number of labour-intensive steps involved in the various 'blotting' techniques which greatly reduces the rate at which assays may be performed. The second is the need to use probes labelled with isotopes which are short-lived and may require stringent safety measures to be employed. Recent work both in this laboratory and elsewhere is designed to circumvent both these problems

    Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor

    No full text
    Pain places a devastating burden on patients and society and current pain therapeutics exhibit limitations in efficacy, unwanted side effects and the potential for drug abuse and diversion. Although genetic evidence has clearly demonstrated that the voltage-gated sodium channel, Nav1.7, is critical to pain sensation in mammals, pharmacological inhibitors of Nav1.7 have not yet fully recapitulated the dramatic analgesia observed in Nav1.7-null subjects. Using the tarantula venom-peptide ProTX-II as a scaffold, we engineered a library of over 1500 venom-derived peptides and identified JNJ63955918 as a potent, highly selective, closed-state Nav1.7 blocking peptide. Here we show that JNJ63955918 induces a pharmacological insensitivity to pain that closely recapitulates key features of the Nav1.7-null phenotype seen in mice and humans. Our findings demonstrate that a high degree of selectivity, coupled with a closed-state dependent mechanism of action is required for strong efficacy and indicate that peptides such as JNJ63955918 and other suitably optimized Nav1.7 inhibitors may represent viable non-opioid alternatives for the pharmacological treatment of severe pain
    • …
    corecore