24 research outputs found

    Phospho-ERK and AKT status, but not KRAS mutation status, are associated with outcomes in rectal cancer treated with chemoradiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>KRAS </it>mutations may predict poor response to radiotherapy. Downstream events from <it>KRAS</it>, such as activation of <it>BRAF</it>, AKT and ERK, may also confer prognostic information but have not been tested in rectal cancer (RC). Our objective was to explore the relationships of <it>KRAS </it>and <it>BRAF </it>mutation status with p-AKT and p-ERK and outcomes in RC.</p> <p>Methods</p> <p>Pre-radiotherapy RC tumor biopsies were evaluated. <it>KRAS </it>and <it>BRAF </it>mutations were assessed by pyrosequencing; p-AKT and p-ERK expression by immunohistochemistry.</p> <p>Results</p> <p>Of 70 patients, mean age was 58; 36% stage II, 56% stage III, and 9% stage IV. Responses to neoadjuvant chemoradiotherapy: 64% limited, 19% major, and 17% pathologic complete response. 64% were <it>KRAS </it>WT, 95% were <it>BRAF </it>WT. High p-ERK levels were associated with improved OS but not for p-AKT. High levels of p-AKT and p-ERK expression were associated with better responses. <it>KRAS </it>WT correlated with lower p-AKT expression but not p-ERK expression. No differences in OS, residual disease, or tumor downstaging were detected by <it>KRAS </it>status.</p> <p>Conclusions</p> <p><it>KRAS </it>mutation was not associated with lesser response to chemoradiotherapy or worse OS. High p-ERK expression was associated with better OS and response. Higher p-AKT expression was correlated with better response but not OS.</p

    Neprilysin Null Mice Develop Exaggerated Pulmonary Vascular Remodeling in Response to Chronic Hypoxia

    No full text
    Neprilysin is a transmembrane metalloendopeptidase that degrades neuropeptides that are important for both growth and contraction. In addition to promoting carcinogenesis, decreased levels of neprilysin increases inflammation and neuroendocrine cell hyperplasia, which may predispose to vascular remodeling. Early pharmacological studies showed a decrease in chronic hypoxic pulmonary hypertension with neprilysin inhibition. We used a genetic approach to test the alternate hypothesis that neprilysin depletion increases chronic hypoxic pulmonary hypertension. Loss of neprilysin had no effect on baseline airway or alveolar wall architecture, vessel density, cardiac function, hematocrit, or other relevant peptidases. Only lung neuroendocrine cell hyperplasia and a subtle neuropeptide imbalance were found. After chronic hypoxia, neprilysin-null mice exhibited exaggerated pulmonary hypertension and striking increases in muscularization of distal vessels. Subtle thickening of proximal media/adventitia not typically seen in mice was also detected. In contrast, adaptive right ventricular hypertrophy was less than anticipated. Hypoxic wild-type pulmonary vessels displayed close temporal and spatial relationships between decreased neprilysin and increased cell growth. Smooth muscle cells from neprilysin-null pulmonary arteries had increased proliferation compared with controls, which was decreased by neprilysin replacement. These data suggest that neprilysin may be protective against chronic hypoxic pulmonary hypertension in the lung, at least in part by attenuating the growth of smooth muscle cells. Lung-targeted strategies to increase neprilysin levels could have therapeutic benefits in the treatment of this disorder
    corecore