16 research outputs found

    Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments

    Get PDF
    Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design

    Evaluation and Monitoring of Glen Helen Water Quality Fall 2014

    Get PDF
    Poster describing the evaluation and monitoring of water quality in the Glen Helen Nature Preserve, Yellow Springs, Ohio, in the Fall of 2014

    Receptor-Based Artificial Metalloenzymes on Living Human Cells

    No full text
    Artificial metalloenzymes are known to be promising tools for biocatalysis, but their recent compartmentalization has led to compatibly with cell components thus shedding light on possible therapeutic applications. We prepared and characterized artificial metalloenzymes based on the A<sub>2A</sub> adenosine receptor embedded in the cytoplasmic membranes of living human cells. The wild type receptor was chemically engineered into metalloenzymes by its association with strong antagonists that were covalently bound to copper­(II) catalysts. The resulting cells enantioselectively catalyzed the abiotic Diels–Alder cycloaddition reaction of cyclopentadiene and azachalcone. The prospects of this strategy lie in the organ-confined in vivo preparation of receptor-based artificial metalloenzymes for the catalysis of reactions exogenous to the human metabolism. These could be used for the targeted synthesis of either drugs or deficient metabolites and for the activation of prodrugs, leading to therapeutic tools with unforeseen applications

    Receptor-Based Artificial Metalloenzymes on Living Human Cells

    No full text
    Artificial metalloenzymes are known to be promising tools for biocatalysis, but their recent compartmentalization has led to compatibly with cell components thus shedding light on possible therapeutic applications. We prepared and characterized artificial metalloenzymes based on the A<sub>2A</sub> adenosine receptor embedded in the cytoplasmic membranes of living human cells. The wild type receptor was chemically engineered into metalloenzymes by its association with strong antagonists that were covalently bound to copper­(II) catalysts. The resulting cells enantioselectively catalyzed the abiotic Diels–Alder cycloaddition reaction of cyclopentadiene and azachalcone. The prospects of this strategy lie in the organ-confined in vivo preparation of receptor-based artificial metalloenzymes for the catalysis of reactions exogenous to the human metabolism. These could be used for the targeted synthesis of either drugs or deficient metabolites and for the activation of prodrugs, leading to therapeutic tools with unforeseen applications

    Evaluation and Monitoring of Glen Helen Water Quality Fall 2014

    No full text
    Poster describing the evaluation and monitoring of water quality in the Glen Helen Nature Preserve, Yellow Springs, Ohio, in the Fall of 2014

    Tryptophan scanning mutagenesis in TM2 of the GABA(A) receptor α subunit: effects on channel gating and regulation by ethanol

    No full text
    1. Each residue in the second transmembrane segment (TM2) of the human GABA(A) receptor α(2) subunit was individually mutated to tryptophan. The wild-type or mutant α(2) subunits were expressed with the wild-type human GABA(A) receptor β(2) subunit in Xenopus oocytes, and the effects of these mutations were investigated using two-electrode voltage-clamp recording. 2. Four mutations (V257W, T262W, T265W and S270W) produced receptors which were active in the absence of agonist, and this spontaneous open channel activity was blocked by both picrotoxin and bicuculline, except in the α(2)(V257W)β(2) mutant receptor, which was not sensitive to picrotoxin. 3. Six mutations (V257W, V260W, T262W, T267W, S270W and A273W) enhanced the agonist sensitivity of the receptor, by 10–100 times compared with the wild-type α(2)β(2) receptor. Other mutations (T261W, V263W, L269W, I271W and S272W) had little or no effect on the apparent affinity of the receptor to GABA. Eight of the tryptophan mutations (R255, T256, F258, G259, L264, T265, M266 or T268) resulted in undetectable GABA-induced currents. 4. The S270W mutation eliminated potentiation of GABA by ethanol, whereas T261W markedly increased the action of ethanol. The T262W mutation produced direct activation (10% of maximal GABA response) by ethanol in the absence of GABA, while other mutations did not alter the action of ethanol significantly. 5. These results are consistent with a unique role for S270 in the action of ethanol within the TM2 region, and with models of GABA(A) receptor channel function, in which specific residues within TM2 are critical for the regulation of channel gating (S270, L264), while other residues (L269, I271 and S272) have little effect on these functions and may be non-critical structural residues
    corecore