381 research outputs found

    Antibacterial surface modification of titanium implants in orthopaedics

    Get PDF
    The use of biomaterials in orthopaedics for joint replacement, fracture healing and bone regeneration is a rapidly expanding field. Infection of these biomaterials is a major healthcare burden, leading to significant morbidity and mortality. Furthermore, the cost to healthcare systems is increasing dramatically. With advances in implant design and production, research has predominately focussed on osseointegration; however, modification of implant material, surface topography and chemistry can also provide antibacterial activity. With the increasing burden of infection, it is vitally important that we consider the bacterial interaction with the biomaterial and the host when designing and manufacturing future implants. During this review, we will elucidate the interaction between patient, biomaterial surface and bacteria. We aim to review current and developing surface modifications with a view towards antibacterial orthopaedic implants for clinical applications

    Unambiguous Turn Position and Rational Trace Languages

    Get PDF
    We show the existence of rational trace languages defined over direct products of free monoids that have inherent ambiguity of the order of log n and n 1/2 . This result is obtained by studying the relationship between trace languages and linear context-free grammars that satisfy a special unambiguity condition on the position of the last step of derivation

    A preliminary assessment of using conservation drones for Sumatran orang-utan (Pongo abelii) distribution and density

    Get PDF
    To conserve biodiversity scientists monitor wildlife populations and their habitats. Current methods have constraints such as the costs of ground or aerial surveys, limited resolution of freely-available satellite images, and expensive high resolution satellite images. Recently researchers started to use unmanned aerial vehicles (aka UAVs or drones) for wildlife and habitat monitoring. Here we tested whether we could detect nests of the critically endangered Sumatran orang-utan on imagery acquired from camera mounted drone to determine distribution and density. Our results show that the distribution of nests compares well between aerial and ground based surveys and that relative density (nest/km) shows a significant correlation between these two survey types. The results also indicate that both methods can be used to detect significant differences in relative density between previously degraded reforested and enriched areas. We conclude that orang-utan nest surveys from drones are a promising survey method to determine distribution and (relative) density of this and perhaps other ape species

    Measuring disturbance at a swift breeding colonies due to the visual aspects of a drone: a quasi-experiment study

    Get PDF
    There is a growing body of research indicating that drones can disturb animals. However, it is usually unclear whether the disturbance is due to visual or auditory cues. Here, we examined the effect of drone flights on the behaviour of great dusky swifts Cypseloides senex and white-collared swifts Streptoprocne zonaris in two breeding sites where drone noise was obscured by environmental noise from waterfalls and any disturbance must be largely visual. We performed 12 experimental flights with a multirotor drone at different vertical, horizontal and diagonal distances from the colonies. From all flights, 17% caused  50 m and that recreational flights should be discouraged or conducted at larger distances (e.g. 100 m) in nesting birds areas such as waterfalls, canyons and caves

    Ape Population Abundance Estimates

    Get PDF
    This annex presents ape abundance estimates at the site level. The term “site” refers to a protected area and its buffer zone, a logging concession or group of concessions, or any discrete area where a survey has taken place in the past two decades, although this annex also lists a few sites that were last surveyed in the 1970s and 1980s.Output Type: Online-only anne

    Noninvasive Technologies for Primate Conservation in the 21st Century

    Get PDF
    Observing and quantifying primate behavior in the wild is challenging. Human presence affects primate behavior and habituation of new, especially terrestrial, individuals is a time-intensive process that carries with it ethical and health concerns, especially during the recent pandemic when primates are at even greater risk than usual. As a result, wildlife researchers, including primatologists, have increasingly turned to new technologies to answer questions and provide important data related to primate conservation. Tools and methods should be chosen carefully to maximize and improve the data that will be used to answer the research questions. We review here the role of four indirect methods—camera traps, acoustic monitoring, drones, and portable field labs—and improvements in machine learning that offer rapid, reliable means of combing through large datasets that these methods generate. We describe key applications and limitations of each tool in primate conservation, and where we anticipate primate conservation technology moving forward in the coming years

    Orangutans venture out of the rainforest and into the Anthropocene

    Get PDF
    Conservation benefits from understanding how adaptability and threat interact to determine a taxon’s vulnerability. Recognizing how interactions with humans have shaped taxa such as the critically endangered orangutan (Pongo spp.) offers insights into this relationship. Orangutans are viewed as icons of wild nature, and most efforts to prevent their extinction have focused on protecting minimally disturbed habitat, with limited success. We synthesize fossil, archeological, genetic, and behavioral evidence to demonstrate that at least 70,000 years of human influence have shaped orangutan distribution, abundance, and ecology and will likely continue to do so in the future. Our findings indicate that orangutans are vulnerable to hunting but appear flexible in response to some other human activities. This highlights the need for a multifaceted, landscape-level approach to orangutan conservation that leverages sound policy and cooperation among government, private sector, and community stakeholders to prevent hunting, mitigate human-orangutan conflict, and preserve and reconnect remaining natural forests. Broad cooperation can be encouraged through incentives and strategies that focus on the common interests and concerns of different stakeholders. Orangutans provide an illustrative example of how acknowledging the long and pervasive influence of humans can improve strategies to preserve biodiversity in the Anthropocene

    Fresh strategies to save orangutans

    Get PDF
    The Bornean orangutan (Pongo pygmaeus) was listed as critically endangered by the International Union for Conservation of Nature this month, despite decades of conservation efforts. We urgently need fresh strategies to counteract habitat loss and hunting, and to mitigate the impacts of climate change

    Thermal-Drones as a Safe and Reliable Method for Detecting Subterranean Peat Fires

    Get PDF
    Underground peat fires are a major hazard to health and livelihoods in Indonesia, and are a major contributor to carbon emissions globally. Being subterranean, these fires can be difficult to detect and track, especially during periods of thick haze and in areas with limited accessibility. Thermal infrared detectors mounted on drones present a potential solution to detecting and managing underground fires, as they allow large areas to be surveyed quickly from above and can detect the heat transferred to the surface above a fire. We present a pilot study in which we show that underground peat fires can indeed be detected in this way. We also show that a simple temperature thresholding algorithm can be used to automatically detect them. We investigate how different thermal cameras and drone flying strategies may be used to reliably detect underground fires and survey fire-prone areas. We conclude that thermal equipped drones are potentially a very powerful tool for surveying for fires and firefighting. However, more investigation is still needed into their use in real-life fire detection and firefighting scenarios

    Addressing environmental and atmospheric challenges for capturing high-precision thermal infrared data in the field of astro-ecology

    Get PDF
    Using thermal infrared detectors mounted on drones, and applying techniques from astrophysics, we hope to support the field of conservation ecology by creating an automated pipeline for the detection and identification of certain endangered species and poachers from thermal infrared data. We test part of our system by attempting to detect simulated poachers in the field. Whilst we find that we can detect humans hiding in the field in some types of terrain, we also find several environmental factors that prevent accurate detection, such as ambient heat from the ground, absorption of infrared emission by the atmosphere, obscuring vegetation and spurious sources from the terrain. We discuss the effect of these issues, and potential solutions which will be required for our future vision for a fully automated drone-based global conservation monitoring system
    • …
    corecore