2,537 research outputs found

    How to define (net) zero greenhouse gas emissions buildings: The results of an international survey as part of IEA EBC annex 72

    Get PDF
    The concept of (net) zero greenhouse gas (GHG) emission(s) buildings is gaining wide international attention and is considered to be the main pathway for achieving climate neutrality targets in the built environment. However, there is an increasing plethora of differing terms, definitions, and approaches emerging worldwide. To understand the current progress of the ongoing discussion, this study provides an overview of terms, definitions, and key features from a review of 35 building assessment approaches. The investigation identified that 13 voluntary frameworks from 11 countries are particularly characterised by net zero-carbon/GHG emissions performance targets, which are then subject to a more detailed analysis. The review was organised in the context of the project IEA EBC Annex 72 on “Assessing Life Cycle Related Environmental Impacts Caused by Buildings”, which involves researchers from over 25 countries worldwide. In the current dynamic political surroundings and ongoing scientific debate, only an initial overview of this topic can be presented. However, providing typologies and fostering transparency would be instrumental in delivering clarity, limiting misunderstanding, and avoiding potential greenwashing. To this end, this article categorises the most critical methodological options—i.e., system boundaries for both operational and embodied GHG emissions, the type of GHG emission factor for electricity use, the approach to the “time” aspect, and the possibilities of GHG emission compensation—into a comprehensive framework for clarifying or setting (net) zero GHG emission building definitions in a more systematic way. The article concludes that although variations in the existing approaches will continue to exist, certain minimum directions should be considered for the future development of harmonised (net) zero GHG emissions building frameworks. As a minimum, it is recommended to extend the usual scope of the operational energy use balance. At the same time, minimum requirements must also be set for embodied GHG emissions even if they are not considered in the carbon/GHG emissions balance

    Preparation and Characterization of Protonated Fumaric Acid

    Get PDF
    Fumaric acid was reacted with the binary superacidic systems HF/SbF5 and HF/AsF5. The O,O'‐diprotonated [C4H6O4]2+([MF6]–)2 (M = As, Sb) and the O‐monoprotonated [C4H5O4]+[MF6]– (M = As, Sb) species are formed depending on the stoichiometric ratio of the Lewis acid to fumaric acid. The colorless salts were characterized by low‐temperature vibrational spectroscopy. In case of the hexafluoridoantimonates single‐crystal X‐ray structure analyses were carried out. The [C4H6O4]2+([SbF6]–)2 crystallizes in the monoclinic space group C2/c with four formula units per unit cell and [C4H5O4]+[SbF6]– crystallizes in the triclinic space group P1 with one formula unit per unit cell. The protonation of fumaric acid does not cause a notable change of the C=C bond length. The experimental data are discussed together with quantum chemical calculations of the cations [C4H6O4 · 4 HF]2+ and [C4H6O4 · 2 H2CO · 2 HF]2+

    Using the ONIOM hybrid method to apply equation of motion CCSD to larger systems: Benchmarking and comparison with time-dependent density functional theory, configuration interaction singles, and time-dependent Hartree–Fock

    Get PDF
    Equation of motion coupled-cluster singles and doubles (EOM-CCSD) is one of the most accurate computational methods for the description of one-electron vertical transitions. However, its O(N6) scaling, where N is the number of basis functions, often makes the study of molecules larger than 10–15 heavy atoms prohibitive. In this work we investigate how accurately less expensive methods can approximate the EOM-CCSD results. We focus on our own N-layer integrated molecular orbital molecular mechanics (ONIOM) hybrid scheme, where the system is partitioned into regions which are treated with different levels of theory. For our set of benchmark calculations, the comparison of conventional configuration interaction singles (CIS), time-dependent Hartree–Fock (TDHF), and time-dependent density functional theory (TDDFT) methods and ONIOM (with different low level methods) showed that the best accuracy-computational time combination is obtained with ONIOM(EOM:TDDFT), which has a rms of the error with respect to the conventional EOM-CCSD of 0.06 eV, compared with 0.47 eV of the conventional TDDFT

    Design and Application of a Gas Diffusion Electrode (GDE) Cell for Operando and In Situ Studies

    Get PDF
    Presented here is an electrochemical three-electrode Gas Diffusion Electrode (GDE) cell tailored for operandoand in situ investigations of electrocatalytic processes, with a particular focus on X-ray scattering studies. The optimized cell is engineered to accommodate the minimal sample-detector distances requisite for comprehensive X-ray total scattering investigations. An in-depth understanding of catalytic processes requires their study under ‘working’ conditions. Configured as a flow-cell, the setup therefore enables the examination of electrocatalysts under high current densities and associated gas evolution phenomena, particularly pertinent for reactions like the oxygen evolution reaction (OER). Notably, its transparency simplifies cell alignment, troubleshooting, and facilitates scans through the catalyst layer, crucial for background corrections. Demonstrating its versatility, we showcase its utility through Small Angle X-ray Scattering (SAXS), X-ray Diffraction (XRD), and X-ray Pair Distribution Function (PDF) analyses of total scattering data

    Fragmentation pathways of nanofractal structures on surface

    Full text link
    We present a detailed systematical theoretical analysis of the post-growth processes occurring in nanofractals grown on surface. For this study we developed a method which accounts for the internal dynamics of particles in a fractal. We demonstrate that particle diffusion and detachment controls the shape of the emerging stable islands on surface. We consider different scenarios of fractal post-growth relaxation and analyze the time evolution of the island's morphology. The results of our calculations are compared with available experimental observations, and experiments in which the post-growth relaxation of deposited nanostructures can be probed are suggested.Comment: 34 pages, 11 figure

    Electron correlations for ground state properties of group IV semiconductors

    Full text link
    Valence energies for crystalline C, Si, Ge, and Sn with diamond structure have been determined using an ab-initio approach based on information from cluster calculations. Correlation contributions, in particular, have been evaluated in the coupled electron pair approximation (CEPA), by means of increments obtained for localized bond orbitals and for pairs and triples of such bonds. Combining these results with corresponding Hartree-Fock (HF) data, we recover about 95 % of the experimental cohesive energies. Lattice constants are overestimated at the HF level by about 1.5 %; correlation effects reduce these deviations to values which are within the error bounds of this method. A similar behavior is found for the bulk modulus: the HF values which are significantly too high are reduced by correlation effects to about 97 % of the experimental values.Comment: 22 pages, latex, 2 figure
    • 

    corecore