1,928 research outputs found

    Ion counting efficiencies at the IGISOL facility

    Full text link
    At the IGISOL-JYFLTRAP facility, fission mass yields can be studied at high precision. Fission fragments from a U target are passing through a Ni foil and entering a gas filled chamber. The collected fragments are guided through a mass separator to a Penning trap where their masses are identified. This simulation work focuses on how different fission fragment properties (mass, charge and energy) affect the stopping efficiency in the gas cell. In addition, different experimental parameters are varied (e. g. U and Ni thickness and He gas pressure) to study their impact on the stopping efficiency. The simulations were performed using the Geant4 package and the SRIM code. The main results suggest a small variation in the stopping efficiency as a function of mass, charge and kinetic energy. It is predicted that heavy fragments are stopped about 9% less efficiently than the light fragments. However it was found that the properties of the U, Ni and the He gas influences this behavior. Hence it could be possible to optimize the efficiency.Comment: 52 pages, 44 figure

    Hydrogen bonding in infinite hydrogen fluoride and hydrogen chloride chains

    Full text link
    Hydrogen bonding in infinite HF and HCl bent (zigzag) chains is studied using the ab initio coupled-cluster singles and doubles (CCSD) correlation method. The correlation contribution to the binding energy is decomposed in terms of nonadditive many-body interactions between the monomers in the chains, the so-called energy increments. Van der Waals constants for the two-body dispersion interaction between distant monomers in the infinite chains are extracted from this decomposition. They allow a partitioning of the correlation contribution to the binding energy into short- and long-range terms. This finding affords a significant reduction in the computational effort of ab initio calculations for solids as only the short-range part requires a sophisticated treatment whereas the long-range part can be summed immediately to infinite distances.Comment: 9 pages, 4 figures, 3 tables, RevTeX4, corrected typo

    Quasiparticle band structure of infinite hydrogen fluoride and hydrogen chloride chains

    Full text link
    We study the quasiparticle band structure of isolated, infinite HF and HCl bent (zigzag) chains and examine the effect of the crystal field on the energy levels of the constituent monomers. The chains are one of the simplest but realistic models of the corresponding three-dimensional crystalline solids. To describe the isolated monomers and the chains, we set out from the Hartree-Fock approximation, harnessing the advanced Green's function methods "local molecular orbital algebraic diagrammatic construction" (ADC) scheme and "local crystal orbital ADC" (CO-ADC) in a strict second order approximation, ADC(2,2) and CO-ADC(2,2), respectively, to account for electron correlations. The configuration space of the periodic correlation calculations is found to converge rapidly only requiring nearest-neighbor contributions to be regarded. Although electron correlations cause a pronounced shift of the quasiparticle band structure of the chains with respect to the Hartree-Fock result, the bandwidth essentially remains unaltered in contrast to, e.g., covalently bound compounds.Comment: 11 pages, 6 figures, 6 tables, RevTeX4, corrected typoe

    Biomarkers of Cerebral Injury for Prediction of Postoperative Cognitive Dysfunction in Patients Undergoing Cardiac Surgery

    Get PDF
    OBJECTIVES: To assess the ability of the biomarkers neuron-specific enolase (NSE), tau, neurofilament light chain (NFL), and glial fibrillary acidic protein (GFAP) to predict postoperative cognitive dysfunction (POCD) at discharge in patients who underwent cardiac surgery. DESIGN: Post hoc analyses (with tests being prespecified before data analyses) from a randomized clinical trial. SETTING: Single-center study from a primary heart center in Denmark. PARTICIPANTS: Adult patients undergoing elective or subacute on-pump coronary artery bypass grafting and/or aortic valve replacement. INTERVENTIONS: Blood was collected before induction of anesthesia, after 24 hours, after 48 hours, and at discharge from the surgical ward. The International Study of Postoperative Cognitive Dysfunction test battery was applied to diagnose POCD at discharge and after three months. Linear mixed models of covariance were used to assess whether repeated measurements of biomarker levels were associated with POCD. Receiver operating characteristic (ROC) curves were applied to assess the predictive value of each biomarker measurement for POCD. MEASUREMENTS AND MAIN RESULTS: A total of 168 patients had biomarkers measured at baseline, and 47 (28%) fulfilled the POCD criteria at discharge. Patients with POCD at discharge had significantly higher levels of tau (p = 0.02) and GFAP (p = 0.01) from baseline to discharge. The biomarker measurements achieving the highest area under the ROC curve for prediction of POCD at discharge were NFL measured at discharge (AUC, 0.64; 95% confidence interval [CI], 0.54-0.73), GFAP measured 48 hours after induction (AUC, 0.64; 95% CI, 0.55-0.73), and GFAP measured at discharge (AUC, 0.64; 95% CI, 0.54-0.74), corresponding to a moderate predictive ability. CONCLUSIONS: Postoperative serum levels of tau and GFAP were elevated significantly in patients with POCD who underwent cardiac surgery at discharge; however, the biomarkers achieved only modest predictive abilities for POCD at discharge. Postoperative levels of NSE were not associated with POCD at discharge

    Oscillatory Shear Flow-Induced Alignment of Lamellar Melts of Hydrogen-Bonded Comb Copolymer Supramolecules

    Get PDF
    In this work we present the orientational behavior of comb copolymer-like supramolecules P4VP(PDP)1.0, obtained by hydrogen bonding between poly(4-vinylpyridine) and pentadecylphenol, during large-amplitude oscillatory shear flow experiments over a broad range of frequencies (0.001-10 Hz). The alignment diagram, presenting the macroscopic alignment in T/TODT vs ω/ωc, contains three regions of parallel alignment separated by a region of perpendicular alignment. For our material, the order-disorder temperature TODT = 67 °C and ωc, the frequency above which the distortion of the chain conformation dominates the materials’ viscoelasticity, is around 0.1 Hz at 61 °C. For the first time flipping from a pure transverse alignment via biaxial transverse/perpendicular alignment to a perpendicular alignment as a function of the strain amplitude was found.

    IEA EBC Annex 57 ‘Evaluation of Embodied Energy and CO<sub>2eq</sub> for Building Construction'

    Get PDF
    The current regulations to reduce energy consumption and greenhouse gas emissions (GHG) from buildings have focused on operational energy consumption. Thus legislation excludes measurement and reduction of the embodied energy and embodied GHG emissions over the building life cycle. Embodied impacts are a significant and growing proportion and it is increasingly recognized that the focus on reducing operational energy consumption needs to be accompanied by a parallel focus on reducing embodied impacts. Over the last six years the Annex 57 has addressed this issue, with researchers from 15 countries working together to develop a detailed understanding of the multiple calculation methods and the interpretation of their results. Based on an analysis of 80 case studies, Annex 57 showed various inconsistencies in current methodological approaches, which inhibit comparisons of results and difficult development of robust reduction strategies. Reinterpreting the studies through an understanding of the methodological differences enabled the cases to be used to demonstrate a number of important strategies for the reduction of embodied impacts. Annex 57 has also produced clear recommendations for uniform definitions and templates which improve the description of system boundaries, completeness of inventory and quality of data, and consequently the transparency of embodied impact assessments

    Conceptual framework for scenarios development in the Water futures and Solutions project

    Get PDF
    The major purpose of the Water Futures & Solutions (WFaS) initiative is to develop a set of adaptable resilient and robust solutions and a framework to facilitate access to and guidance through them by decision makers facing a variety of water-related challenges to sustainable evelopment, and a set of optional pathways to achieve plausible sustainable development goals by 2050. The WFaS Initiative addresses the multidimensional aspects of the water system and is guided by stakeholders representing these various aspects. The Initiative views freshwater systems as being strongly interweaved with human activities (Economy, Society) and Nature as a whole. Dynamics and health of freshwater systems is critical to human well- being. The Initiative will go beyond scenario production and model comparisons and will focus on exploring solutions and necessary innovations to address the growing water challenges. Solutions can be combinations of technological innovations, regulatory approaches, manageent or institutional changes that improve the balance of water supply and demand, improve water quality, or reduce water-related risks for society. Solutions will often be embedded in and cut across all sectors of social and economic activities. In order to represent the aspirations and interdependencies as described above, the conceptual framework has been developed, to communicate project results to the target audiences. This document describes this conceptual framework that will be used: -to support development of qualitative water scenarios -to identify and select critical dimensions of the water scenarios -to guide integration of scenarios with quantitative models -to guide integration of information from various data sources into the scenarios -to support development and assessment of solutions -to support collaboration between project and stakeholder groups -to facilitate presentation of results to target audiences The WFaS conceptual framework is developed using the 'concept maps' technique (Caqas and Carff, 2005; Novak and Caqas, 2006b). Concept maps method was develop to represent knowledge in an organized way. It allows practitioners to represent concepts and specific relationships between concepts. It is flexible enough to adapt to different knowledge domains to support better understanding and communication between individuals and groups from different backgrounds

    Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM

    Full text link
    In this paper a new technique aimed to obtain accurate estimates of the error in energy norm using a moving least squares (MLS) recovery-based procedure is presented. We explore the capabilities of a recovery technique based on an enhanced MLS fitting, which directly provides continuous interpolated fields, to obtain estimates of the error in energy norm as an alternative to the superconvergent patch recovery (SPR). Boundary equilibrium is enforced using a nearest point approach that modifies the MLS functional. Lagrange multipliers are used to impose a nearly exact satisfaction of the internal equilibrium equation. The numerical results show the high accuracy of the proposed error estimator
    corecore