308 research outputs found

    A CE assay for the detection of agonist-stimulated adenylyl cyclase activity

    Full text link
    A CE assay was developed for the detection of adenylyl cyclase (AC) activity stimulated at the AC and G protein-coupled receptor (GPCR) level. In the assay, cell membranes overexpressing GPCR and/or AC were incubated with modulators and substrate ATP to produce cAMP in a dose-dependent manner. In both the CE-UV and a radiochemical assay, the addition of forskolin (FSK) resulted in a two- to three-fold maximum increase in AC activity with EC 50 s of 4.2 14± 140.7 and 2.4 14± 140.7 14ΜM, respectively, demonstrating that similar results were obtained by both assays. GPCR activation was also detected using cell membranes overexpressing AC and the Β 2 -adrenergic receptor (Β 2 AR) fused to the stimulatory G protein. Terbutaline (Β 2 AR agonist) increased the basal rate of cAMP formation 1.7 14± 140.1-fold resulting in an EC 50 of 62 14± 1410 14nM. The assay's ability to detect antagonists is demonstrated by the expected right-shifted EC 50 of terbutaline by the Β 2 AR antagonist propranolol. The CE-UV assay offers advantages over the traditional radioactivity assay in terms of safety and labor.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56060/1/1913_ftp.pd

    Damping Mechanisms for Microgravity Vibration Isolation (MSFC Center Director's Discretionary Fund Final Report, Project No. 94-07)

    Get PDF
    As a research facility for microgravity science, the International Space Station (ISS) will be used for numerous investigations such as protein crystal growth, combustion, and fluid mechanics experiments which require a quiescent acceleration environment across a broad spectrum of frequencies. These experiments are most sensitive to low-frequency accelerations and can tolerate much higher accelerations at higher frequency. However, the anticipated acceleration environment on ISS significantly exceeds the required acceleration level. The ubiquity and difficulty in characterization of the disturbance sources precludes source isolation, requiring vibration isolation to attenuate the anticipated disturbances to an acceptable level. This memorandum reports the results of research in active control methods for microgravity vibration isolation

    Environment, human reproduction, menopause, and andropause.

    Get PDF
    As the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator is an integrator of hormonal, metabolic, and neural signals, it is not surprising that the function of the hypothalamogonadal axis is subject to the influence of a large array of environmental factors. Before puberty, the central nervous system (CNS) restrains the GnRH pulse generator. Undernutrition, low socioeconomic status, stress, and emotional deprivation, all delay puberty. During reproductive life, among peripheral factors that effect the reproductive system, stress plays an important role. Stress, via the release of corticotropin-releasing factor (CRF), eventually triggered by interleukin 1, inhibits GnRH release, resulting in hypogonadism. Effects of CRF are probably mediated by the opioid system. Food restriction and underweight (anorexia nervosa), obesity, smoking, and alcohol all have negative effects on the GnRH pulse generator and gonadal function. Age and diet are important determinants of fertility in both men and women. The age-associated decrease in fertility in women has as a major determinant chromosomal abnormalities of the oocyte, with uterine factors playing a subsidiary role. Age at menopause, determined by ovarian oocyte depletion, is influenced by occupation, age at menarche, parity, age at last pregnancy, altitude, smoking, and use of oral contraceptives. Smoking, however, appears to be the major determinant. Premature menopause is most frequently attributable to mosaicism for Turner Syndrome, mumps ovaritis, and, above all, total hysterectomy, which has a prevalence of about 12-15% in women 50 years old. Premature ovarian failure with presence of immature follicles is most frequently caused by autoimmune diseases or is the consequence of irradiation or chemotherapy with alkylating cytostatics. Plasma estrogens have a physiological role in the prevention of osteoporosis. Obese women have osteoporosis less frequently than women who are not overweight. Early menopause, suppression of adrenal function (corticoids), and thyroid hormone treatment all increase the frequency of osteoporosis. Aging in men is accompanied by decreased Leydig cell and Sertoli cell function, which has a predominantly primary testicular origin, although changes also occur at the hypothalamopituitary level. Plasma testosterone levels, sperm production, and sperm quality decrease, but fertility, although declining, is preserved until senescence. Stress and disease states accelerate the decline on Leydig cell function. Many occupational noxious agents have a negative effect on fertility.(ABSTRACT TRUNCATED AT 400 WORDS

    Opera and poison : a secret and enjoyable approach to teaching and learning chemistry

    Get PDF
    The storyline of operas, with historical or fictional characters, often include potions and poisons. This has prompted a study of the chemistry behind some operatic plots. The results were originally presented as a lecture given at the University of Minho in Portugal, within the context of the International Year of Chemistry. The same lecture was subsequently repeated at other universities as an invited lecture for science students and in public theaters for wider audiences. The lecture included a multimedia and interactive content that allowed the audience to listen to arias and to watch video clips with selected scenes extracted from operas. The present article, based on the lecture, demonstrates how chemistry and opera can be related and may also serve as a source of motivation and inspiration for chemistry teachers looking for alternative pedagogical approaches. Moreover, the lecture constitutes a vehicle that transports chemistry knowledge to wider audiences through examples of everyday molecules, with particular emphasis on natural products.The author is pleased to express his gratitude to Jorge Calado and Michael John Smith for useful discussions. The author also thanks the reviewers of the manuscript for their helpful comments and suggestions. Thanks are due to the Foundation for Science and Technology (FCT,Portugal), QREN and FEDER/EU for financial support through the research centers, CQ/UM PEst-C/QUI/UI0686/2011. Ciencia Viva, Portugal, is also acknowledged for financial support of the activities organized by the University of Minho during the International Year of Chemistry. The author also expresses his gratitude to Ana Paula Ferreira and Andre Cunha Leal from RTP Antena 2 who contributed immensely to the popularization of the lecture on which this paper is based on

    G-protein-coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent

    Get PDF
    G-protein coupled receptors (GPCRs) constitute the largest class of membrane proteins and are a major drug target. A serious obstacle to studying GPCR structure/function characteristics is the requirement to extract the receptors from their native environment in the plasma membrane, coupled with the inherent instability of GPCRs in the detergents required for their solubilization. In the present study, we report the first solubilization and purification of a functional GPCR [human adenosine A2A receptor (A2AR)], in the total absence of detergent at any stage, by exploiting spontaneous encapsulation by styrene maleic acid (SMA) co-polymer direct from the membrane into a nanoscale SMA lipid particle (SMALP). Furthermore, the A2AR-SMALP, generated from yeast (Pichia pastoris) or mammalian cells, exhibited increased thermostability (∼5°C) compared with detergent [DDM (n-dodecyl-β-D-maltopyranoside)]-solubilized A2AR controls. The A2AR-SMALP was also stable when stored for prolonged periods at 4°C and was resistant to multiple freeze-thaw cycles, in marked contrast with the detergent-solubilized receptor. These properties establish the potential for using GPCR-SMALP in receptor-based drug discovery assays. Moreover, in contrast with nanodiscs stabilized by scaffold proteins, the non-proteinaceous nature of the SMA polymer allowed unobscured biophysical characterization of the embedded receptor. Consequently, CD spectroscopy was used to relate changes in secondary structure to loss of ligand binding ([3H]ZM241385) capability. SMALP-solubilization of GPCRs, retaining the annular lipid environment, will enable a wide range of therapeutic targets to be prepared in native-like state to aid drug discovery and understanding of GPCR molecular mechanisms

    Regulation of GIP and GLP1 Receptor Cell Surface Expression by N-Glycosylation and Receptor Heteromerization

    Get PDF
    In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer

    Alveolar hypoxia, alveolar macrophages, and systemic inflammation

    Get PDF
    Diseases featuring abnormally low alveolar PO2 are frequently accompanied by systemic effects. The common presence of an underlying inflammatory component suggests that inflammation may contribute to the pathogenesis of the systemic effects of alveolar hypoxia. While the role of alveolar macrophages in the immune and defense functions of the lung has been long known, recent evidence indicates that activation of alveolar macrophages causes inflammatory disturbances in the systemic microcirculation. The purpose of this review is to describe observations in experimental animals showing that alveolar macrophages initiate a systemic inflammatory response to alveolar hypoxia. Evidence obtained in intact animals and in primary cell cultures indicate that alveolar macrophages activated by hypoxia release a mediator(s) into the circulation. This mediator activates perivascular mast cells and initiates a widespread systemic inflammation. The inflammatory cascade includes activation of the local renin-angiotensin system and results in increased leukocyte-endothelial interactions in post-capillary venules, increased microvascular levels of reactive O2 species; and extravasation of albumin. Given the known extrapulmonary responses elicited by activation of alveolar macrophages, this novel phenomenon could contribute to some of the systemic effects of conditions featuring low alveolar PO2

    Synergistic interplay of Gβγ and phosphatidylinositol 4,5-bisphosphate dictates Kv7.4 channel activity.

    Get PDF
    Kv7.4 channels are key determinants of arterial contractility and cochlear mechanosensation that, like all Kv7 channels, have an obligatory requirement for phosphatidylinositol 4,5-bisphosphate (PIP2). βγ G proteins (Gβγ) have been identified as novel positive regulators of Kv7.4. The present study ascertained whether Gβγ increased Kv7.4 open probability through an increased sensitivity to PIP2. In HEK cells stably expressing Kv7.4, PIP2 or Gβγ increased open probability in a concentration dependent manner. Depleting PIP2 prevented any Gβγ-mediated stimulation whilst an array of Gβγ inhibitors prohibited any PIP2-induced current enhancement. A combination of PIP2 and Gβγ at sub-efficacious concentrations increased channel open probability considerably. The stimulatory effects of three Kv7.2-7.5 channel activators were also lost by PIP2 depletion or Gβγ inhibitors. This study alters substantially our understanding of the fundamental processes that dictate Kv7.4 activity, revealing a more complex and subtle paradigm where the reliance on local phosphoinositide is dictated by interaction with Gβγ

    Can environmental or occupational hazards alter the sex ratio at birth? A systematic review

    Get PDF
    More than 100 studies have examined whether environmental or occupational exposures of parents affect the sex ratio of their offspring at birth. For this review, we searched Medline and Web of Science using the terms ‘sex ratio at birth’ and ‘sex ratio and exposure’ for all dates, and reviewed bibliographies of relevant studies to find additional articles. This review focuses on exposures that have been the subject of at least four studies including polychlorinated biphenyls (PCBs), dioxins, pesticides, lead and other metals, radiation, boron, and g-forces. For paternal exposures, only dioxins and PCBs were consistently associated with sex ratios higher or lower than the expected 1.06. Dioxins were associated with a decreased proportion of male births, whereas PCBs were associated with an increased proportion of male births. There was limited evidence for a decrease in the proportion of male births after paternal exposure to DBCP, lead, methylmercury, non-ionizing radiation, ionizing radiation treatment for childhood cancer, boron, or g-forces. Few studies have found higher or lower sex ratios associated with maternal exposures. Studies in humans and animals have found a reduction in the number of male births associated with lower male fertility, but the mechanism by which environmental hazards might change the sex ratio has not yet been established
    corecore