2 research outputs found

    A non-hybrid method for the PDF equations of turbulent flows on unstructured grids

    Full text link
    In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. A set of parallel algorithms is proposed to provide an efficient solution of the PDF transport equation, modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain (e.g. the mean pressure) and to track particles. All three aspects regarding the grid make use of the finite element method (FEM) employing the simplest linear FEM shape functions. To model the small-scale mixing of the transported scalar, the interaction by exchange with the conditional mean model is adopted. An adaptive algorithm that computes the velocity-conditioned scalar mean is proposed that homogenizes the statistical error over the sample space with no assumption on the shape of the underlying velocity PDF. Compared to other hybrid particle-in-cell approaches for the PDF equations, the current methodology is consistent without the need for consistency conditions. The algorithm is tested by computing the dispersion of passive scalars released from concentrated sources in two different turbulent flows: the fully developed turbulent channel flow and a street canyon (or cavity) flow. Algorithmic details on estimating conditional and unconditional statistics, particle tracking and particle-number control are presented in detail. Relevant aspects of performance and parallelism on cache-based shared memory machines are discussed.Comment: Accepted in Journal of Computational Physics, Feb. 20, 200

    Joint PDF modelling of turbulent flow and dispersion in an urban street canyon

    Full text link
    The joint probability density function (PDF) of turbulent velocity and concentration of a passive scalar in an urban street canyon is computed using a newly developed particle-in-cell Monte Carlo method. Compared to moment closures, the PDF methodology provides the full one-point one-time PDF of the underlying fields containing all higher moments and correlations. The small-scale mixing of the scalar released from a concentrated source at the street level is modelled by the interaction by exchange with the conditional mean (IECM) model, with a micro-mixing time scale designed for geometrically complex settings. The boundary layer along no-slip walls (building sides and tops) is fully resolved using an elliptic relaxation technique, which captures the high anisotropy and inhomogeneity of the Reynolds stress tensor in these regions. A less computationally intensive technique based on wall functions to represent boundary layers and its effect on the solution are also explored. The calculated statistics are compared to experimental data and large-eddy simulation. The present work can be considered as the first example of computation of the full joint PDF of velocity and a transported passive scalar in an urban setting. The methodology proves successful in providing high level statistical information on the turbulence and pollutant concentration fields in complex urban scenarios.Comment: Accepted in Boundary-Layer Meteorology, Feb. 19, 200
    corecore