137 research outputs found

    Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss

    Get PDF
    Mutations in PINK1 and PARK2 cause autosomal recessive parkinsonism, a neurodegenerative disorder that is characterized by the loss of dopaminergic neurons. To discover potential therapeutic pathways, we identified factors that genetically interact with Drosophila park and Pink1. We found that overexpression of the translation inhibitor Thor (4E-BP) can suppress all of the pathologic phenotypes, including degeneration of dopaminergic neurons in Drosophila. 4E-BP is activated in vivo by the TOR inhibitor rapamycin, which could potently suppress pathology in Pink1 and park mutants. Rapamycin also ameliorated mitochondrial defects in cells from individuals with PARK2 mutations. Recently, 4E-BP was shown to be inhibited by the most common cause of parkinsonism, dominant mutations in LRRK2. We also found that loss of the Drosophila LRRK2 homolog activated 4E-BP and was also able to suppress Pink1 and park pathology. Thus, in conjunction with recent findings, our results suggest that pharmacologic stimulation of 4E-BP activity may represent a viable therapeutic approach for multiple forms of parkinsonism

    Phylogenetic Reconstruction and DNA Barcoding for Closely Related Pine Moth Species (Dendrolimus) in China with Multiple Gene Markers

    Get PDF
    Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI) gene and two alternative internal transcribed spacer (ITS) genes (ITS1 and ITS2). Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML)/Neighbor-joining (NJ), “best close match” (BCM), Minimum distance (MD), and BP-based method (BP)), representing commonly used methodology (tree-based and non-tree based) in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10–97.40%, while ITS1 and ITS2 obtained a success rate of 64.70–81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In addition, our results indicate that the most closely related species D. punctatus, D. tabulaeformis, and D. spectabilis, may be still in the process of incomplete lineage sorting, with occasional hybridizations occurring among them

    Statistical Inference for Multi-Pathogen Systems

    Get PDF
    There is growing interest in understanding the nature and consequences of interactions among infectious agents. Pathogen interactions can be operational at different scales, either within a co-infected host or in host populations where they co-circulate, and can be either cooperative or competitive. The detection of interactions among pathogens has typically involved the study of synchrony in the oscillations of the protagonists, but as we show here, phase association provides an unreliable dynamical fingerprint for this task. We assess the capacity of a likelihood-based inference framework to accurately detect and quantify the presence and nature of pathogen interactions on the basis of realistic amounts and kinds of simulated data. We show that when epidemiological and demographic processes are well understood, noisy time series data can contain sufficient information to allow correct inference of interactions in multi-pathogen systems. The inference power is dependent on the strength and time-course of the underlying mechanism: stronger and longer-lasting interactions are more easily and more precisely quantified. We examine the limitations of our approach to stochastic temporal variation, under-reporting, and over-aggregation of data. We propose that likelihood shows promise as a basis for detection and quantification of the effects of pathogen interactions and the determination of their (competitive or cooperative) nature on the basis of population-level time-series data

    A New Method for Species Identification via Protein-Coding and Non-Coding DNA Barcodes by Combining Machine Learning with Bioinformatic Methods

    Get PDF
    Species identification via DNA barcodes is contributing greatly to current bioinventory efforts. The initial, and widely accepted, proposal was to use the protein-coding cytochrome c oxidase subunit I (COI) region as the standard barcode for animals, but recently non-coding internal transcribed spacer (ITS) genes have been proposed as candidate barcodes for both animals and plants. However, achieving a robust alignment for non-coding regions can be problematic. Here we propose two new methods (DV-RBF and FJ-RBF) to address this issue for species assignment by both coding and non-coding sequences that take advantage of the power of machine learning and bioinformatics. We demonstrate the value of the new methods with four empirical datasets, two representing typical protein-coding COI barcode datasets (neotropical bats and marine fish) and two representing non-coding ITS barcodes (rust fungi and brown algae). Using two random sub-sampling approaches, we demonstrate that the new methods significantly outperformed existing Neighbor-joining (NJ) and Maximum likelihood (ML) methods for both coding and non-coding barcodes when there was complete species coverage in the reference dataset. The new methods also out-performed NJ and ML methods for non-coding sequences in circumstances of potentially incomplete species coverage, although then the NJ and ML methods performed slightly better than the new methods for protein-coding barcodes. A 100% success rate of species identification was achieved with the two new methods for 4,122 bat queries and 5,134 fish queries using COI barcodes, with 95% confidence intervals (CI) of 99.75–100%. The new methods also obtained a 96.29% success rate (95%CI: 91.62–98.40%) for 484 rust fungi queries and a 98.50% success rate (95%CI: 96.60–99.37%) for 1094 brown algae queries, both using ITS barcodes

    Genomic Selection for Fruit Quality Traits in Apple (Malus×domestica Borkh.)

    Get PDF
    The genome sequence of apple (Malus×domestica Borkh.) was published more than a year ago, which helped develop an 8K SNP chip to assist in implementing genomic selection (GS). In apple breeding programmes, GS can be used to obtain genomic breeding values (GEBV) for choosing next-generation parents or selections for further testing as potential commercial cultivars at a very early stage. Thus GS has the potential to accelerate breeding efficiency significantly because of decreased generation interval or increased selection intensity. We evaluated the accuracy of GS in a population of 1120 seedlings generated from a factorial mating design of four females and two male parents. All seedlings were genotyped using an Illumina Infinium chip comprising 8,000 single nucleotide polymorphisms (SNPs), and were phenotyped for various fruit quality traits. Random-regression best liner unbiased prediction (RR-BLUP) and the Bayesian LASSO method were used to obtain GEBV, and compared using a cross-validation approach for their accuracy to predict unobserved BLUP-BV. Accuracies were very similar for both methods, varying from 0.70 to 0.90 for various fruit quality traits. The selection response per unit time using GS compared with the traditional BLUP-based selection were very high (>100%) especially for low-heritability traits. Genome-wide average estimated linkage disequilibrium (LD) between adjacent SNPs was 0.32, with a relatively slow decay of LD in the long range (r2 = 0.33 and 0.19 at 100 kb and 1,000 kb respectively), contributing to the higher accuracy of GS. Distribution of estimated SNP effects revealed involvement of large effect genes with likely pleiotropic effects. These results demonstrated that genomic selection is a credible alternative to conventional selection for fruit quality traits

    Regulation of mitophagy by the NSL complex underlies genetic risk for Parkinson's disease at 16q11.2 and MAPT H1 loci.

    Get PDF
    Parkinson's disease is a common incurable neurodegenerative disease. The identification of genetic variants via genome-wide association studies has considerably advanced our understanding of the Parkinson's disease genetic risk. Understanding the functional significance of the risk loci is now a critical step towards translating these genetic advances into an enhanced biological understanding of the disease. Impaired mitophagy is a key causative pathway in familial Parkinson's disease, but its relevance to idiopathic Parkinson's disease is unclear. We used a mitophagy screening assay to evaluate the functional significance of risk genes identified through genome-wide association studies. We identified two new regulators of PINK1-dependent mitophagy initiation, KAT8 and KANSL1, previously shown to modulate lysine acetylation. These findings suggest PINK1-mitophagy is a contributing factor to idiopathic Parkinson's disease. KANSL1 is located on chromosome 17q21 where the risk associated gene has long been considered to be MAPT. While our data does not exclude a possible association between the MAPT gene and Parkinson's disease, it provides strong evidence that KANSL1 plays a crucial role in the disease. Finally, these results enrich our understanding of physiological events regulating mitophagy and establish a novel pathway for drug targeting in neurodegeneration

    Sequence variation, evolutionary constraint, and selection at the CD163 gene in pigs

    Get PDF
    Abstract Background In this work, we investigated sequence variation, evolutionary constraint, and selection at the CD163 gene in pigs. A functional CD163 protein is required for infection by porcine reproductive and respiratory syndrome virus, which is a serious pathogen with major impacts on pig production. Results We used targeted pooled sequencing of the exons of CD163 to detect sequence variants in 35,000 pigs of diverse genetic backgrounds and to search for potential stop-gain and frameshift indel variants. Then, we used whole-genome sequence data from three pig lines to calculate: a variant intolerance score that measures the tolerance of genes to protein coding variation; an estimate of selection on protein-coding variation over evolutionary time; and haplotype diversity statistics to detect recent selective sweeps during breeding. Conclusions Using a deep survey of sequence variation in the CD163 gene in domestic pigs, we found no potential knockout variants. The CD163 gene was moderately intolerant to variation and showed evidence of positive selection in the pig lineage, but no evidence of recent selective sweeps during breeding

    True versus False Parasite Interactions: A Robust Method to Take Risk Factors into Account and Its Application to Feline Viruses

    Get PDF
    International audienceBACKGROUND: Multiple infections are common in natural host populations and interspecific parasite interactions are therefore likely within a host individual. As they may seriously impact the circulation of certain parasites and the emergence and management of infectious diseases, their study is essential. In the field, detecting parasite interactions is rendered difficult by the fact that a large number of co-infected individuals may also be observed when two parasites share common risk factors. To correct for these "false interactions", methods accounting for parasite risk factors must be used. METHODOLOGY/PRINCIPAL FINDINGS: In the present paper we propose such a method for presence-absence data (i.e., serology). Our method enables the calculation of the expected frequencies of single and double infected individuals under the independence hypothesis, before comparing them to the observed ones using the chi-square statistic. The method is termed "the corrected chi-square." Its robustness was compared to a pre-existing method based on logistic regression and the corrected chi-square proved to be much more robust for small sample sizes. Since the logistic regression approach is easier to implement, we propose as a rule of thumb to use the latter when the ratio between the sample size and the number of parameters is above ten. Applied to serological data for four viruses infecting cats, the approach revealed pairwise interactions between the Feline Herpesvirus, Parvovirus and Calicivirus, whereas the infection by FIV, the feline equivalent of HIV, did not modify the risk of infection by any of these viruses. CONCLUSIONS/SIGNIFICANCE: This work therefore points out possible interactions that can be further investigated in experimental conditions and, by providing a user-friendly R program and a tutorial example, offers new opportunities for animal and human epidemiologists to detect interactions of interest in the field, a crucial step in the challenge of multiple infections
    corecore