48 research outputs found

    Printed frequency selective surfaces on textiles

    Get PDF
    This letter introduces a novel technique for inkjet printing frequency selective surfaces (FSS) on textiles. The challenge of printing an inkjet layer of three micron thickness on polyester cotton with a surface roughness of the order of 150 microns is achieved with a screen printed interface layer. The conducting inkjet layer is then printed directly on top of the interface layer. A screen mask was used so that the interface layer was only printed directly below the conducting ink. A square FSS structure has been fabricated and the measured shielding has been compared to simulations

    3-D printed bandpass filters with coupled vertically extruded split ring resonators

    Get PDF
    The additive manufacturing process of multimaterial extrusion offers performance advantages using functional materials including conductors while making accessible the third dimension in the design of electronics. In this work we show that the additional geometrical freedom offered by this technique can be exploited for the design and realisation of filters made of three- dimensional (3D) resonators that exhibit enhanced characteristics. The coupling properties of 3D grounded square split ring resonators (SRRs) are initially explored. We demonstrate by simulations and experiments that SRRs with finite height display significantly stronger coupling compared to equivalent thin printed circuit structures. The observed trend can be exploited for designing filters with wider operational bandwidths for a given footprint, or miniaturized layouts and enhanced compatibility with fabrication limits for minimum feature size and spacing without performance degradation. This concept is demonstrated by presenting results of full-wave simulations for sample bandpass filters with identical footprint but formed by coupled 3D square SRRs of different heights, showing that filters with taller resonators exhibit increasingly wider bandwidths. Two filter prototypes with centre frequencies at 1.6 GHz and 2.45 GHz are manufactured by multimaterial 3D printing. The measured characteristics of these prototypes are found to be in good agreement with numerical simulations taking into account the effect of the lossier metallic and dielectric materials used in 3D printing and confirm the predicted larger bandwidth of the filters made of 3D SRRs with marginally higher insertion losses

    Inkjet-printed microstrip patch antennas realized on textile for wearable applications

    Get PDF
    This letter introduces a new technique of inkjet printing antennas on textiles. A screen-printed interface layer was used to reduce the surface roughness of the polyester/cotton material that facilitated the printing of a continuous conducting surface. Conducting ink was used to create three inkjet-printed microstrip patch antennas. An efficiency of 53% was achieved for a fully flexible antenna with two layers of ink. Measurements of the antennas bent around a polystyrene cylinder indicated that a second layer of ink improved the robustness to bending. © 2014 IEEE

    Band-pass filter-like antenna validation in an ultra-wideband in-car wireless channel

    Get PDF
    Ultra-wide band (UWB) is a very attractive technology for innovative in-car wireless communications requiring high data rates. A designated antenna, which presents a reflection coefficient (S11) matched band comparable to the Band Pass Filters (BPF) normally required at the transducers, plays a positive contribution in this in-car application and was validated for the scenario. The inherited BPF-like response of the antenna relaxes the specification of the front-end BPF components of the transceivers. The in-car propagation channel was modelled and used to validate the BPF-like antenna. For the modelling, a comprehensive set of well-defined measurements (using a standard antenna) were used to set-up the in-car channel simulator and simulated results were used to validate the BPF-like antenna. Additionally, the performance of the UWB radio system is studied and the probability of errors over the communication channel compared using the standard and the BPF-like antenna by predictions

    Higher‐mode textile patch antenna with embroidered vias for on‐body communication

    Get PDF
    This paper is a preprint of a paper accepted by IET Microwaves, Antennas and Propagation, and is subject to Institution of Engineering and Technology Copyright. When the final version is published, the copy of record will be available at IET Digital Library.This study presents a wearable textile higher-mode microstrip patch antenna (HMMPA) that has been designed to radiate omni-directionally at 2.4 GHz Industrial Scientific and Medical (ISM) band. Emphasis is given to the fabrication process of the textile vias with conductive sewing thread that plays an important role in generating the optimal mode for on-body radiation. The embroidery technique enabled a side-fed low-profile antenna which could be placed directly against the body. The proposed textile HMMPA antenna performance is compared with a probe-fed HMMPA antenna fabricated with rigid copper radiating parts, for both free space and on-body conditions. The on-body antenna performance has been tested by performing near-field measurements of the antenna on a full-body specific anthropomorphic mannequin phantom in an anechoic chamber. Results show that the proposed textile HMMPA antenna with vias made from conductive thread can radiate on-body with good efficiency while minimising the radiation in the broadside direction

    Towards industrial internet of things: Crankshaft monitoring, traceability and tracking using RFID

    Get PDF
    This paper was accepted for publication in the journal Robotics and Computer-Integrated Manufacturing and the definitive published version is available at http://dx.doi.org/10.1016/j.rcim.2016.02.004.The large number of requirements and opportunities for automatic identification in manufacturing domains such as automotive and electronics has accelerated the demand for item-level tracking using radio-frequency identification technology. End-users are interested in implementing automatic identification systems, which are capable of ensuring full component process history, traceability and tracking preventing costly downtime to rectify processing defects and product recalls. The research outlined in this paper investigates the feasibility of implementing an RFID system for the manufacturing and assembly of crankshafts. The proposed solution involves the attachment of bolts with embedded RFID functionality by fitting a reader antenna reader to an overhead gantry that spans the production line and reads and writes production data to the tags. The manufacturing, assembly and service data captured through RFID tags and stored on a local server, could further be integrated with higher-level business applications facilitating seamless integration within the factory

    Design, realisation and evaluation of a liquid hollow torso phantom appropriate for wearable antenna assessment

    Get PDF
    This paper is a postprint of a paper submitted to and accepted for publication in IET Microwaves, Antennas & Propagation and is subject to Institution of Engineering and Technology Copyright. The copy of record will be available at the IET Digital Library.This paper examines the design, realization and evaluation of a lightweight and low cost hollow oval cross-section torso phantom appropriate for wearable antenna performance assessment. The phantom consists of an empty inner space (hollow) surrounded by a shell with double plastic walls between which there is a tissue simulating liquid. The phantom’s plastic shell is made of a low loss cast acrylic and the liquid is a commercially available one with properties calibrated for the frequency range of 2 - 6 GHz. The proposed phantom is compared, through simulations, with a full liquid torso phantom and a heterogeneous anthropomorphic voxel phantom. Additionally, the fabricated phantom is compared with human bodies and a homogeneous anthropomorphic solid phantom, through measurements. The phantom performance is tested in terms of electric field distribution of a wearable antenna on its surface and the path loss between two wearable antennas, on either side of the phantom. It is proved that the hollow phantom performance approximates the full liquid phantom when an RF absorbing material is placed in the central hollow region. The phantom performance in terms of S11 wearable antenna measurements is evaluated and found in good agreement with real human bodies in the examined frequency range (2 - 6 GHz). The far field wearable antenna performance of the proposed phantom shows deviation in gain less than 1.5 dB, compared with anthropomorphic phantom

    Additively manufactured artificial materials with metallic meta‐atoms

    Get PDF
    This is an Open Access Article. It is published by IET under the Creative Commons Attribution 3.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/3.0/The paper presents the analysis and fabrication of artificial materials with metallic cuboid inclusions (termed here as meta-atoms) in a dielectric host material. These synthetic materials or metamaterials have been additively manufactured with a fused deposition modelling (FDM) 3D-printer. The effective permittivity and permeability have been numerically analyzed using the Maxwell-Garnett and Lewin’s approximation. Simulations and measurements have shown good agreement with analytical calculations. The anisotropy of the heterogeneous mixture due to the orientation of the meta-atoms has been demonstrated. The effective permittivity has been increased by the presence of the meta-atoms, which has the potential of producing 3D-printing metamaterials with tailored electromagnetic properties

    Evaluating the Potential Effectiveness of Compensatory Mitigation Strategies for Marine Bycatch

    Get PDF
    Conservationists are continually seeking new strategies to reverse population declines and safeguard against species extinctions. Here we evaluate the potential efficacy of a recently proposed approach to offset a major anthropogenic threat to many marine vertebrates: incidental bycatch in commercial fisheries operations. This new approach, compensatory mitigation for marine bycatch (CMMB), is conceived as a way to replace or reduce mandated restrictions on fishing activities with compensatory activities (e.g., removal of introduced predators from islands) funded by levies placed on fishers. While efforts are underway to bring CMMB into policy discussions, to date there has not been a detailed evaluation of CMMB's potential as a conservation tool, and in particular, a list of necessary and sufficient criteria that CMMB must meet to be an effective conservation strategy. Here we present a list of criteria to assess CMMB that are tied to critical ecological aspects of the species targeted for conservation, the range of possible mitigation activities, and the multi-species impact of fisheries bycatch. We conclude that, overall, CMMB has little potential for benefit and a substantial potential for harm if implemented to solve most fisheries bycatch problems. In particular, CMMB is likely to be effective only when applied to short-lived and highly-fecund species (not the characteristics of most bycatch-impacted species) and to fisheries that take few non-target species, and especially few non-seabird species (not the characteristics of most fisheries). Thus, CMMB appears to have limited application and should only be implemented after rigorous appraisal on a case-specific basis; otherwise it has the potential to accelerate declines of marine species currently threatened by fisheries bycatch
    corecore