1,826 research outputs found

    1,3,4,6-Tetramethyl-1,4-dihydro-1,2,4,5-tetrazine, C_6H_(12)N_4

    Get PDF
    M_r =140∙19, monoclinic, P2_1/n, a = 10∙612(3), b=6∙820(1), c= 10∙975 (2) Å, β=95∙31(2)°, V=790.9(5) Å^3, Z=4, D_m=1.13(5) (flotation), D_x = 1∙177 g cm^(-3), Mo Kα, λ = 0.71073 Å, μ= 0.848 cm^(-1), F(000) = 304, T= 295 K, R = 0∙077 for 704 observed reflections. This potentially antiaromatic or homoaromatic ring system has a flattened boat conformation with both N-methyls in equatorial positions. Bond angles and distances (excluding H's) predicted to be symmetry equivalent exhibit variations of 0.002-0.014 Å and 0.0-2.0°. Substantial delocalization of the electron lone pairs of N(1) and N(4) is found

    Statistical Properties of Radio Emission from the Palomar Seyfert Galaxies

    Get PDF
    We have carried out an analysis of the radio and optical properties of a statistical sample of 45 Seyfert galaxies from the Palomar spectroscopic survey of nearby galaxies. We find that the space density of bright galaxies (-22 mag <= M_{B_T} <= -18 mag) showing Seyfert activity is (1.25 +/- 0.38) X 10^{-3} Mpc^{-3}, considerably higher than found in other Seyfert samples. Host galaxy types, radio spectra, and radio source sizes are uncorrelated with Seyfert type, as predicted by the unified schemes for active galaxies. Approximately half of the detected galaxies have flat or inverted radio spectra, more than expected based on previous samples. Surprisingly, Seyfert 1 galaxies are found to have somewhat stronger radio sources than Seyfert 2 galaxies at 6 and 20 cm, particularly among the galaxies with the weakest nuclear activity. We suggest that this difference can be accommodated in the unified schemes if a minimum level of Seyfert activity is required for a radio source to emerge from the vicinity of the active nucleus. Below this level, Seyfert radio sources might be suppressed by free-free absorption associated with the nuclear torus or a compact narrow-line region, thus accounting for both the weakness of the radio emission and the preponderance of flat spectra. Alternatively, the flat spectra and weak radio sources might indicate that the weak active nuclei are fed by advection-dominated accretion disks.Comment: 18 pages using emulateapj5, 13 embedded figures, accepted by Ap

    Epidermal growth factor receptors in intracranial and breast tumours: their clinical significance.

    Get PDF
    A method to determine the binding of epidermal growth factor (EGF) to the particulate fraction of the cell has been established and evaluated using rat liver, human placenta, and tumours of human breast and brain. Little EGF receptor (EGFR) activity was detected in normal or benign tumour tissues except for meningioma (positive in 95% samples), but EGFR were present in 43% of 131 breast tumours and 75% of 55 primary cerebral tumours. Despite the strong inverse correlation between EGFR activity and oestrogen receptors in breast tumours and a tendency for high levels of EGFR activity to be associated with glioblastoma multiforme, analysis showed that EGFR was of little prognostic significance in patients with tumours of either breast or brain

    Granger causality and transfer entropy are equivalent for Gaussian variables

    Full text link
    Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. Developed originally in the field of econometrics, it has since found application in a broader arena, particularly in neuroscience. More recently transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes, has gained traction in a similarly wide field. While it has been recognized that the two concepts must be related, the exact relationship has until now not been formally described. Here we show that for Gaussian variables, Granger causality and transfer entropy are entirely equivalent, thus bridging autoregressive and information-theoretic approaches to data-driven causal inference.Comment: In review, Phys. Rev. Lett., Nov. 200

    A Quantum Langevin Formulation of Risk-Sensitive Optimal Control

    Full text link
    In this paper we formulate a risk-sensitive optimal control problem for continuously monitored open quantum systems modelled by quantum Langevin equations. The optimal controller is expressed in terms of a modified conditional state, which we call a risk-sensitive state, that represents measurement knowledge tempered by the control purpose. One of the two components of the optimal controller is dynamic, a filter that computes the risk-sensitive state. The second component is an optimal control feedback function that is found by solving the dynamic programming equation. The optimal controller can be implemented using classical electronics. The ideas are illustrated using an example of feedback control of a two-level atom

    Probing the Ionizing Continuum of Narrow-Line Seyfert 1 Galaxies. I.Observational Results

    Full text link
    We present optical spectra and emission-line ratios of 12 Narrow-Line Seyfert 1 (NLS1) galaxies that we observed to study the ionizing EUV continuum. A common feature in the EUV continuum of active galactic nuclei is the big blue bump (BBB), generally associated with thermal accretion disk emission. While Galactic absorption prevents direct access to the EUV range, it can be mapped by measuring the strength of a variety of forbidden optical emission lines that respond to different EUV continuum regions. We find that narrow emission-line ratios involving [OII]3727, Hbeta, [OIII]5007, [OI]6300, Halpha,[NII]6583, and [SII]6716,6731 indicate no significant difference between NLS1s and Broad-Line Seyfert 1 (BLS1) galaxies, which suggests that the spectral energy distributions of their ionizing EUV - soft X-ray continua are similar. The relative strength of important forbidden high ionization lines like [NeV]3426 compared to HeII4686 and the relative strength of [FeX]6374 appear to show the same range as in BLS1 galaxies. However, a trend of weaker F([OI]6300)/F(Halpha) emission-line ratios is indicated for NLS1s compared to BLS1s. To recover the broad emission-line profiles we used Gaussian components. This approach indicates that the broad Hbeta profile can be well described with a broad component (FWHM = 3275 +- 800 km/s) and an intermediate broad component (FWHM = 1200 +- 300 km/s). The width of the broad component is in the typical range of normal BLS1s. The emission-line flux that is associated with the broad component in these NLS1s amounts to at least 60% of the total flux. Thus it dominates the total line flux, similar to BLS1 galaxies.Comment: 34 pages, 9 figures. accepted for publication in the Astrophys.Journa

    ISO-SWS spectroscopy of NGC 1068

    Get PDF
    We present ISO-SWS spectroscopy of NGC 1068 for the wavelength range 2.4 to 45um, detecting a total of 36 emission lines. Most of the observed transitions are fine structure and recombination lines originating in the narrow line region. We compare the line profiles of optical lines and reddening-insensitive infrared lines to constrain the dynamical structure and extinction properties of the NLR. The considerable differences found are most likely explained by two effects. (1) The spatial structure of the NLR is a combination of a highly ionized outflow cone and lower excitation extended emission. (2) Parts of the NLR, mainly in the receding part at velocities above systemic, are subject to extinction that is significantly suppressing optical emission. Line asymmetries and net blueshifts remain, however, even for infrared fine structure lines suffering very little obscuration. This may be either due to an intrinsic asymmetry of the NLR, or due to a very high column density obscuring component which is hiding part of the NLR even from infrared view. Mid-infrared emission of molecular hydrogen in NGC 1068 arises in a dense molecular medium at temperatures of a few hundred Kelvin that is most likely closely related to the warm and dense components seen in the near-infrared H2 transitions, and in millimeter wave tracers of molecular gas. Any emission of the putative pc-scale molecular torus is likely overwhelmed by this larger scale emission.Comment: aastex (V4), 9 eps figures. Accepted by Ap

    The origin of the Narrow Line Region of Mrk 3: an overpressured jet cocoon

    Get PDF
    We have obtained HST FOC long-slit optical spectroscopy of the Narrow Line Region of the Seyfert 2 galaxy Mrk 3. In the region cospatial with the radio-jet the velocity field is highly perturbed and shows two velocity systems separated by as much as 1700 km/s. We interpret this to be the consequence of the rapid expansion of a cocoon of hot gas, shocked and heated by the radio-emitting outflow, which compresses and accelerates the ambient gas. The NLR itself is essentially a cylindrical shell expanding supersonically. From the size and velocity of the expanding region, we derive an upper limit to the radio-source age, ~ 2 E42 erg/s required to inflate the cocoon and estimate that the jet minimum advance speed is 3 E-3 pc per year. The total kinetic energy of the high velocity NLR gas can be estimated as ~6 E54 erg, comparable to the total energy carried by the jet over its lifetime and this quantitatively supports the idea that the NLR gas is accelerated by the jet. If the advance speed of Mrk 3 is representative of the Seyfert population then these sources must also be short lived and probably recurrent. The jet kinetic luminosity of Mrk 3 is between 2 and 3 orders of magnitude smaller than that derived for radio-loud AGNs with similar emission-line luminosity. On the other hand, the fraction of jet power dissipated in radio-emission is similar. We speculate that the main distinction between radio-quiet and radio-loud AGN is ascribed to a difference in jet power rather than to a different efficiency in synchrotron emission production.Comment: 13 pages, 8 figures, Astrophysical Journal in pres

    Physical Conditions in the Narrow-Line Region of M51

    Full text link
    We have investigated the physical conditions in the narrow-line region (NLR) of M51 using long-slit spectra obtained with the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST) and 3.6 cm radio continuum observations obtained with the Very Large Array (VLA). Emission-line diagnostics were employed for nine NLR clouds, which extend 2.5" (102 pc) from the nucleus, to examine the electron density, temperature, and ionization state of the NLR gas. The emission-line ratios are consistent with those typically found in Seyfert nuclei and indicate that within the inner near-nuclear region (r ~< 1") the ionization decreases with increasing radius. Upper-limits to the [O III] electron temperature (T ~< 11,000 K) for the inner NLR clouds indicate that photoionization is the dominant ionization mechanism close to the nucleus. The emission-line fluxes for most of the NLR clouds can be reproduced reasonably well by simple photoionization models using a central power-law continuum source and supersolar nitrogen abundances. Shock+precursor models, however, provide a better fit to the observed fluxes of an NLR cloud ~2.5" south of the nucleus that is identified with the extra-nuclear cloud (XNC). The large [O III] electron temperature of this cloud (T = 24,000 K) further suggests the presence of shocks. This cloud is straddled by two radio knots and lies near the location where a weak radio jet, ~2.5" (102pc) in extent, connects the near-nuclear radio emission with a diffuse lobe structure spanning \~4" (163 pc). It is plausible that this cloud represents the location where the radio jet impinges on the disk ISM.Comment: 25 pages, 26 figures (9 color), 7 tables. Accepted for publication in the Astrophysical Journa
    • …
    corecore