3,955 research outputs found

    On the instability of classical dynamics in theories with higher derivatives

    Get PDF
    The development of instability in the dynamics of theories with higher derivatives is traced in detail in the framework of the Pais-Uhlenbeck fourth oder oscillator. For this aim the external friction force is introduced in the model and the relevant solutions to equations of motion are investigated. As a result, the physical implication of the energy unboundness from below in theories under consideration is revealed.Comment: 9 pages, no figures and no tables, revtex4; a few misprints are correcte

    Easy on that trigger dad: a study of long term family photo retrieval

    Get PDF
    We examine the effects of new technologies for digital photography on people's longer term storage and access to collections of personal photos. We report an empirical study of parents' ability to retrieve photos related to salient family events from more than a year ago. Performance was relatively poor with people failing to find almost 40% of pictures. We analyze participants' organizational and access strategies to identify reasons for this poor performance. Possible reasons for retrieval failure include: storing too many pictures, rudimentary organization, use of multiple storage systems, failure to maintain collections and participants' false beliefs about their ability to access photos. We conclude by exploring the technical and theoretical implications of these findings

    Using machine learning to parametrize postmerger signals from binary neutron stars

    Get PDF
    There is growing interest in the detection and characterization of gravitational waves from postmerger oscillations of binary neutron stars. These signals contain information about the nature of the remnant and the high-density and out-of-equilibrium physics of the postmerger processes, which would complement any electromagnetic signal. However, the construction of binary neutron star postmerger waveforms is much more complicated than for binary black holes: (i) there are theoretical uncertainties in the neutron-star equation of state and other aspects of the high-density physics, (ii) numerical simulations are expensive and available ones only cover a small fraction of the parameter space with limited numerical accuracy, and (iii) it is unclear how to parametrize the theoretical uncertainties and interpolate across parameter space. In this work, we describe the use of a machine-learning method called a conditional variational autoencoder (CVAE) to construct postmerger models for hyper/massive neutron star remnant signals based on numerical-relativity simulations. The CVAE provides a probabilistic model, which encodes uncertainties in the training data within a set of latent parameters. We estimate that training such a model will ultimately require ∼104\sim 10^4 waveforms. However, using synthetic training waveforms as a proof-of-principle, we show that the CVAE can be used as an accurate generative model and that it encodes the equation of state in a useful latent representation

    The manifest association structure of the single-factor model: insights from partial correlations

    Get PDF
    The association structure between manifest variables arising from the single-factor model is investigated using partial correlations. The additional insights to the practitioner provided by partial correlations for detecting a single-factor model are discussed. The parameter space for the partial correlations is presented, as are the patterns of signs in a matrix containing the partial correlations that are not compatible with a single-factor model

    Phasing of gravitational waves from inspiralling eccentric binaries at the third-and-a-half post-Newtonian order

    Full text link
    We obtain an efficient description for the dynamics of nonspinning compact binaries moving in inspiralling eccentric orbits to implement the phasing of gravitational waves from such binaries at the 3.5 post-Newtonian (PN) order. Our computation heavily depends on the phasing formalism, presented in [T. Damour, A. Gopakumar, and B. R. Iyer, Phys. Rev. D \textbf{70}, 064028 (2004)], and the 3PN accurate generalized quasi-Keplerian parametric solution to the conservative dynamics of nonspinning compact binaries moving in eccentric orbits, available in [R.-M. Memmesheimer, A. Gopakumar, and G. Sch\"afer, Phys. Rev. D \textbf{70}, 104011 (2004)]. The gravitational-wave (GW) polarizations h+h_{+} and h×h_{\times} with 3.5PN accurate phasing should be useful for the earth-based GW interferometers, current and advanced, if they plan to search for gravitational waves from inspiralling eccentric binaries. Our results will be required to do \emph{astrophysics} with the proposed space-based GW interferometers like LISA, BBO, and DECIGO.Comment: 22 pages including 2 figures; submitted to PR

    Quench dynamics of topological quantum phase transition in Wen-plaquette model

    Full text link
    We study the quench dynamics of the topological quantum phase transition in the two-dimensional transverse Wen-plaquette model, which has a phase transition from a Z2 topologically ordered to a spin-polarized state. By mapping the Wen-plaquette model onto a one-dimensional quantum Ising model, we calculate the expectation value of the plaquette operator Fi during a slowly quenching process from a topologically ordered state. A logarithmic scaling law of quench dynamics near the quantum phase transition is found, which is analogous to the well-known static critical behavior of the specific heat in the one-dimensional quantum Ising model.Comment: 8 pages, 5 figures,add new conten

    Properties of finite Gaussians and the discrete-continuous transition

    Full text link
    Weyl's formulation of quantum mechanics opened the possibility of studying the dynamics of quantum systems both in infinite-dimensional and finite-dimensional systems. Based on Weyl's approach, generalized by Schwinger, a self-consistent theoretical framework describing physical systems characterised by a finite-dimensional space of states has been created. The used mathematical formalism is further developed by adding finite-dimensional versions of some notions and results from the continuous case. Discrete versions of the continuous Gaussian functions have been defined by using the Jacobi theta functions. We continue the investigation of the properties of these finite Gaussians by following the analogy with the continuous case. We study the uncertainty relation of finite Gaussian states, the form of the associated Wigner quasi-distribution and the evolution under free-particle and quantum harmonic oscillator Hamiltonians. In all cases, a particular emphasis is put on the recovery of the known continuous-limit results when the dimension dd of the system increases.Comment: 21 pages, 4 figure
    • …
    corecore