5,055 research outputs found

    Environmental effects on polymeric matrix composites

    Get PDF
    Current epoxy resins utilized in high performance structural composites absorb moisture from high humidity environments. Such moisture absorption causes plasticization of the resin to occur with concurrent swelling and lowering of the glass transition temperature. Similar effects are observed in composites. Data are presented showing the effects of absorbed moisture on Hercules AS/3501-5 graphite/epoxy composites. Prediction of moisture content and distribution in composites, along with reduction in mechanical properties, are discussed

    The effectiveness of a double-stem injection valve in controlling combustion in a compression-ignition engine

    Get PDF
    An investigation was made to determine to what extent the rates of combustion in a compression-ignition engine can be controlled by varying the rates of fuel injection. The tests showed that the double-stem valve operated satisfactorily under all normal injection conditions; the rate of injection has a definite effect on the rate of combustion; the engine performance with the double-stem valve was inferior to that obtained with a single-stem valve; and the control of injection rates permitted by an injection valve of two stages of discharge is not sufficient to effect the desired rates of combustion

    Analytical and Experimental Study of Flow Through an Axial Turbine Stage with a Nonuniform Inlet Radial Temperature Profile

    Get PDF
    Results are presented for a typical nonuniform inlet radial temperature profile through an advanced single-stage axial turbine and compared with the results obtained for a uniform profile. Gas temperature rises of 40 K to 95 K are predicted at the hub and tip corners at the trailing edges of the pressure surfaces in both the stator and rotor due to convection of hot fluid from the mean by the secondary flow. The inlet temperature profile is shown to be mixed out at the rotor exit survey plane (2.3 axial chords downstream of the rotor trailing edge) in both the analysis and the experiment. The experimental rotor exit angle profile for the nonuniform inlet temperature profile indicates underturning at the tip caused by increased clearance. Severe underturning also occurs at the mean, both with and without the nonuniform inlet temperature profile. The inviscid rotational flow code used in the analysis fails to predict the underturning at the mean, which may be caused by viscous effects

    Description of the warm core turbine facility recently installed at NASA Lewis Research Center

    Get PDF
    The two net facilities were installed and operated at their design, or rated conditions. The important feature of both of these facilities is that the ratio of turbine inlet temperature to coolant temperature encountered in high temperature engines can be duplicated at moderate turbine inlet temperature. The limits of the facilities with regard to maximum temperature, maximum pressure, maximum mass flow rate, turbine size, and dynamometer torque-speed characteristics are discussed

    Performance of a high-work low aspect ration turbine tested with a realistic inlet radial temperature profile

    Get PDF
    Experimental results are presented for a 0.767 scale model of the first stage of a two-stage turbine designed for a high by-pass ratio engine. The turbine was tested with both uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The inlet temperature profile was essentially mixed-out in the rotor. There was also substantial underturning of the exit flow at the mean diameter. Both of these effects were attributed to strong secondary flows in the rotor blading. There were no significant differences in the stage performance with either inlet condition when differences in tip clearance were considered. Performance was very close to design intent in both cases

    Cold-air investigation of a 4 1/2 stage turbine with stage-loading factor of 4.66 and high specific work output. 2: Stage group performance

    Get PDF
    The stage group performance of a 4 1/2 stage turbine with an average stage loading factor of 4.66 and high specific work output was determined in cold air at design equivalent speed. The four stage turbine configuration produced design equivalent work output with an efficiency of 0.856; a barely discernible difference from the 0.855 obtained for the complete 4 1/2 stage turbine in a previous investigation. The turbine was designed and the procedure embodied the following design features: (1) controlled vortex flow, (2) tailored radial work distribution, and (3) control of the location of the boundary-layer transition point on the airfoil suction surface. The efficiency forecast for the 4 1/2 stage turbine was 0.886, and the value predicted using a reference method was 0.862. The stage group performance results were used to determine the individual stage efficiencies for the condition at which design 4 1/2 stage work output was obtained. The efficiencies of stages one and four were about 0.020 lower than the predicted value, that of stage two was 0.014 lower, and that of stage three was about equal to the predicted value. Thus all the stages operated reasonably close to their expected performance levels, and the overall (4 1/2 stage) performance was not degraded by any particularly inefficient component

    Cold air investigation of 4 1/2-stage turbine with stage loading factor of 4.66 and high specific work output. 1: Overall performance

    Get PDF
    The turbine developed design specific work output at design speed at a total pressure ratio of 6.745 with a corresponding efficiency of 0.855. The efficiency (0.855)was 3.1 points lower than the estimated efficiency quoted by the contractor in the design report and 0.7 of a point lower than that determined by a reference prediction method. The performance of the turbine, which was a forced vortex design, agreed with the performance determined by the prediction method to about the same extent as did the performance of three reference high stage loading factor turbines, which were free vortex designs

    The bisymplectomorphism group of a bounded symmetric domain

    Get PDF
    An Hermitian bounded symmetric domain in a complex vector space, given in its circled realization, is endowed with two natural symplectic forms: the flat form and the hyperbolic form. In a similar way, the ambient vector space is also endowed with two natural symplectic forms: the Fubini-Study form and the flat form. It has been shown in arXiv:math.DG/0603141 that there exists a diffeomorphism from the domain to the ambient vector space which puts in correspondence the above pair of forms. This phenomenon is called symplectic duality for Hermitian non compact symmetric spaces. In this article, we first give a different and simpler proof of this fact. Then, in order to measure the non uniqueness of this symplectic duality map, we determine the group of bisymplectomorphisms of a bounded symmetric domain, that is, the group of diffeomorphisms which preserve simultaneously the hyperbolic and the flat symplectic form. This group is the direct product of the compact Lie group of linear automorphisms with an infinite-dimensional Abelian group. This result appears as a kind of Schwarz lemma.Comment: 19 pages. Version 2: minor correction
    • …
    corecore