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Introduction

Let Ω be an Hermitian bounded symmetric domain in a complex vector space
V ; we always assume that Ω is given in its circled realization. The domain Ω is
endowed with two natural symplectic forms: the flat form ω0 and the hyperbolic
form ω−. In a similar way, the ambient vector space V is also endowed with two
natural symplectic forms: the Fubini-Study form ω+ and the flat form ω0 (see
Section 1 for the definition of ω−, ω0, ω+). It has been shown in [1] that there
exists a diffeomorphism F : Ω→ V such that

F ∗ω0 = ω−, F ∗ω+ = ω0. (0.1)

This map is the same that was used in [4], with the property

F ∗ωn+ = ωn0
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(n = dimC V ), to show that the flat volume of a bounded symmetric domain,
with some natural normalization, is equal to the degree of a canonical projective
embedding of its compact dual. In the one-dimensional case, where V = C and Ω
is the unit disc ∆, this map is simply f : ∆→ C given by

f(z) =
z√

1− |z|2
. (0.2)

Even in this case, it does not seem that the property (0.1) had been noticed before.
In the general case, the map F may be defined by

F (z) = B(z, z)−1/4z, (0.3)

where B(z, z) denotes the Bergman operator of the Jordan triple structure on V
associated to Ω; it may also be defined by functional calculus in Hermitian pos-
itive Jordan triples. In view of the property (0.1), the map F is called map of
(bi)symplectic duality. The part F ∗ω0 = ω− tells that F is a realization of the iso-
morphism of Mc Duff [3] for the bounded symmetric domain Ω; but the property
(0.1), which involves two pairs of symplectic forms, is much stronger. In order to
determine all diffeomorphisms F : Ω → V verifying (0.1), we determine the group
of bisymplectomorphims of Ω, that is, diffeomorphisms φ : Ω→ Ω such that

φ∗ω0 = ω0, φ∗ω− = ω−. (0.4)

This group is infinite-dimensional, but is the semi-direct product of the compact
group K of linear automorphisms of Ω with an infinite-dimensional Abelian group
of “radial circular diffeomorphisms” (Theorem 4); this is the main result of this
article and may be considered as a kind of Schwarz lemma.

The plan of this article is as follows. In Section 1, we recall known facts about Jor-
dan triple systems associated to bounded complex symmetric domains (see mainly
[2]); the only result we could not find in the literature is Proposition 1, which
describes the tangent space of the manifold of frames (the “Fürstenberg-Satake
boundary” of Ω) in terms of Peirce decomposition in Jordan triples. In Section
2, we compute the symplectic forms ω0 and ω− using spectral decomposition in
Jordan triples, which is the appropriate generalization of polar coordinates. From
this, we derive in Section 3 a simple proof of the property (0.1), different from
the proof given in [1]. Section 4 is devoted to the study and characterization of
bisymplectomorphisms.

1. Hermitian positive Jordan triples

Let Ω be a bounded symmetric domain in a finite dimensional complex vector
space V . We will always consider such a domain in its (unique up to linear isomor-
phism) circled realization. Consider the associated Jordan triple system (V, { , , }).
For basic facts about Hermitian positive Jordan triples and their correspondence
with complex symmetric domains, see [2], [4]. We recall hereunder those which will
be used here.

1.1. Definitions and notations. Consider the operators on the Jordan triple V
defined by

D(x, y)z = {x, y, z} , (1.1)

Q(x, z)y = {x, y, z} , (1.2)
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Q(x, x) = 2Q(x), (1.3)

B(x, y) = idV −D(x, y) +Q(x)Q(y). (1.4)

The operators D(x, y) and B(x, y) are C-linear, the operator Q(x) is C-antilinear.
The hermitian form

(u | v) = trD(u, v) (1.5)

is a Hermitian scalar product on V ; with respect to this product, D(x, x) and
B(x, x) are self-adjoint.

For z ∈ V , the odd powers z(2p+1) of z in the Jordan triple system V are defined
by

z(1) = z, z(2p+1) = Q(z)z(2p−1). (1.6)

An element e ∈ V is called tripotent if e 6= 0 and e(3) = e. Two tripotents e1, e2 are
called (strongly) orthogonal if D (e1, e2) = 0. A tripotent element is called minimal,
or primitive, if it is not the sum of two orthogonal tripotents. A tripotent element
e is called maximal if there is no tripotent orthogonal to e.

1.2. Spectral decomposition. Each element z ∈ V has a unique spectral decom-
position

z = λ1e1 + · · ·+ λses (λ1 > · · · > λs > 0), (1.7)

where (e1, . . . , es) is a sequence of pairwise orthogonal tripotents. The integer
s = rk z is called the rank of z. Let V +

z be the R-subspace of V generated by the
odd powers z, . . . , z(2p+1), . . . and Vz = V +

z ⊕ iV +
z the C-subspace generated by the

odd powers of z. Then rk z = dimR V
+
z and (e1, . . . , es) is an R-basis of V +

z . The
rank of V is r = rkV = max {rk z | z ∈ V }; elements z such that rk z = rkV are
called regular. If z ∈ V is regular, with spectral decomposition

z = λ1e1 + · · ·+ λrer (λ1 > · · · > λr > 0), (1.8)

then (e1, . . . , er) is a (Jordan) frame of V , that is, a maximal sequence of pairwise
orthogonal minimal tripotents.

1.3. Peirce decompositions. Let e ∈ V be a tripotent. Then the eigenvalues of
D(e, e) are contained in {0, 1, 2}. Define the Peirce subspaces of e as

Vi(e) = {z ∈ V | D(e, e)z = iz} (i ∈ {0, 1, 2}). (1.9)

The decomposition

V = V0(e)⊕ V1(e)⊕ V2(e) (1.10)

is called the Peirce decomposition of V w.r. to e. A tripotent e is maximal if
V0(e) = 0, minimal if V2(e) = Ce. The Peirce subspaces compose according to the
law

{Vi(e), Vj(e), Vk(e)} ⊂ Vi−j+k(e), (1.11)

where Vm(e) = 0 if m /∈ {0, 1, 2}; in particular, Peirce subspaces are Jordan sub-
systems of V . The C-antilinear operator Q(e) is 0 on V0(e)⊕ V1(e); its restriction
to V2(e) is involutive. Let

V +
2 (e) = {v ∈ V | D(e, e)v = 2v, Q(e)v = v} . (1.12)

Then the decomposition of V (e) into (real) eigenspaces of Q(e) is

V2(e) = V +
2 (e)⊕ iV +

2 (e). (1.13)
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Let e = (e1, . . . , es) be a sequence of pairwise orthogonal tripotents. Then the
operators D(ej , ej), 1 ≤ j ≤ s commute and have the common eigenspaces

Vjj(e) = V2(ej) (1 ≤ j ≤ s),
Vjk(e) = V1(ej) ∩ V1(ek) (1 ≤ j < k ≤ s),

V0j(e) = V1(ej) ∩
⋂
k 6=j

V0(ek) (1 ≤ j ≤ s), (1.14)

V00(e) =
⋂
k

V0(ek)

(some of these subspaces may be 0). The decomposition

V =
⊕

0≤j≤k≤s

Vjk(e) (1.15)

is called the simultaneous Peirce decomposition of V w.r. to e. If

z = λ1e1 + · · ·+ λses (λj ∈ C),
e = e1 + · · ·+ es

and v ∈ Vjk(e), then

D(z, z)v =
(
|λj |2 + |λk|2

)
v (1.16)

Q(z)v = λjλkQ(e)v, (1.17)

Q(z)Q(z) = |λjλk|2 v, (1.18)

B(z, z)v =
(

1− |λj |2
)(

1− |λk|2
)
v, (1.19)

B(z,−z)v =
(

1 + |λj |2
)(

1 + |λk|2
)
v, (1.20)

where λ0 = 0. So the Vjk(e)’s are eigenspaces for all the operators D(z, z), B(z, z),
B(z,−z), z = λ1e1 + · · ·+ λses.

1.4. Hermitian metrics and symplectic forms. Let V be a Hermitian positive
Jordan triple and let Ω be the associated Hermitian bounded symmetric domain.
Let

h0(z)(u, v) = (u | v) = trD(u, v) (1.21)

be the flat Hermitian metric and let

ω0(z) =
i
2
∂∂ (z | z) ,

ω0(z)(u, v) =
i
2

((u | v)− (v | u))

be the associated flat symplectic form. If Ω is endowed with the volume form ωn0
(n = dimC V ), the Bergman kernel of Ω is

K(x, y) =
C

detB(x, y)
,

with C =
(∫

Ω
ωn0
)−1. The Bergman metric of Ω is

h−(z)(u, v) = ∂u∂v lnK(z, z) = −∂u∂v ln detB(z, z).
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It satisfies the relation

h−(z)(u, v) = h0

(
B(z, z)−1u, v

)
. (1.22)

In view of this relation, B(z, z) is called the Bergman operator at z ∈ Ω.
The hyperbolic symplectic form of Ω, associated to the Bergman metric, is defined

by

ω−(z) = − i
2
∂∂ ln detB(z, z). (1.23)

From (1.22), it results that the forms ω0 and ω− are related with the Bergman
operator by

ω−(z)(u, v) = ω0(B(z, z)−1u, v), (1.24)

for z ∈ Ω and u, v ∈ TzΩ.
The (generalized) Fubini-Study metric on V is defined by

h+(z)(u, v) = ∂u∂v ln detB(z,−z).
The associated Kähler form is

ω+(z) =
i
2
∂∂ ln detB(z,−z).

It is related to the flat form by

ω+(z)(u, v) = ω0(B(z,−z)−1u, v). (1.25)

1.5. Polar coordinates. Let M be the set ot tripotents elements of the positive
Jordan triple V . Then M is a compact submanifold of V (with connected compo-
nents of different dimensions). At e ∈ M , the tangent space TeM and the normal
space NeM to M are

TeM = iV +
2 (e)⊕ V1(e), (1.26)

NeM = V0(e)⊕ V +
2 (e) (1.27)

(see [2], Theorem 5.6).
The height k of a tripotent element e is the maximal length of a decomposition

e = e1 + · · ·+ ek into a sum of pairwise orthogonal (minimal) tripotents. Minimal
tripotents have height 1, maximal tripotents have height r = rkV . Denote by Mk

the set of tripotents of height k. If V is simple (that is, if Ω is irreducible), the
submanifolds Mk are the connected components of M .

The set F of frames (also called Fürstenberg-Satake boundary of Ω):

F = {(e1, . . . , er) | ej ∈M1, ej ⊥ ek (1 ≤ j < k ≤ r)} , (1.28)

(where ej ⊥ ek means orthogonality of tripotents: D(ej , ek) = 0 or equivalently
{ej , ej , ek} = 0) is a submanifold of V r. The following proposition provides a
description of the tangent space of F .

Proposition 1. Let e = (e1, . . . , er) ∈ F ⊂ V r and e = e1 + · · · + er. Then
(v1, . . . , vr) ∈ TeF if and only if

vj = iαjej + vj0 +
∑

1≤k≤r
k 6=j

vjk (1 ≤ j ≤ r), (1.29)

where αj ∈ R, vj0 ∈ V0j(e), vjk ∈ Vjk(e) = Vkj(e) and

Q(e)vjk = −vkj (1 ≤ j < k ≤ r). (1.30)
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Proof. Let (v1, . . . , vr) ∈ TeF . As ej are minimal tripotents, we have

vj = TejM1 = i Rej ⊕ V1(ej) = i Rej ⊕ V0j(e)⊕
⊕

1≤k≤r
k 6=j

Vjk(e),

which shows that vj has the form (1.29).
The orthogonality conditions in a frame are

{ej , ej , ek} = 0 (1 ≤ j < k ≤ r).
Differentiating these conditions yields

{vj , ej , ek}+ {ej , vj , ek}+ {ej , ej , vk} = 0 (1 ≤ j < k ≤ r).
As D(ej , ek) = 0, this condition is reduced to

Q(ej , ek)vj +D(ej , ej)vk = 0 (1 ≤ j < k ≤ r). (1.31)

Let

vj = iαjej + vj0 +
∑

1≤m≤r
m6=j

vjm (1 ≤ j ≤ r).

Then

D(ej , ej)vk = vkj , Q(ej , ek)ej = 0,

Q(ej , ek) = Q(ej + ek)−Q(ej)−Q(ek),

and we get from (1.17)

Q(ej + ek)vjm = δmk Q(e)vjm, Q(ej)vjm = 0, Q(ek)vjm = 0,

Q(ej , ek)vj = Q(e)vjk.

This shows that the conditions (1.31) are equivalent to (1.30). �

Comparing the description of TeF with the simultaneous Peirce decomposition
of V w.r. to e, it is easily checked that TeF is a real vector space of dimension
2n− r, where n = dimC V . This implies that the map

{λ1 > · · · > λr > 0} × F → Vreg

((λ1, . . . , λr) , (e1, . . . , er)) 7→
∑

λjej (1.32)

is a diffeomorphism onto the set Vreg of regular elements of V ; its restriction

{1 > λ1 > · · · > λr > 0} × F → Ωreg

is a diffeomorphism onto the set Ωreg of regular elements of Ω. This map plays the
same role as polar coordinates in rank one.

1.6. Functional calculus. Using the spectral decomposition, it is possible to as-
sociate to an odd function f : (−1, 1) → C (resp. f : R → C) a “radial” map
F : Ω→ V (resp. F : V → V ) in the following way. Let z ∈ V and let

z = λ1e1 + · · ·+ λkek, λ1 > · · · > λk > 0

be the spectral decomposition of z. Define the map F = f̃ associated to f by

F (z) = f(λ1)e1 + · · ·+ f(λk)ek. (1.33)

Since f is odd, it follows from properties of tripotents that, for

z = λ1e1 + · · ·+ λrer,
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where e = (e1, . . . , er) is a frame and λ1, . . . , λr ∈ R, we have

F (z) = f(λ1)e1 + · · ·+ f(λr)er. (1.34)

If f is continuous, then F is continuous.
If

f(t) =
N∑
k=0

akt
2k+1

is a polynomial, then F is the map defined by

F (z) =
N∑
k=0

akz
(2k+1) (z ∈ V ). (1.35)

If f is analytic, then F is real-analytic; if f is given near 0 by

f(t) =
∞∑
k=0

akt
2k+1,

then F has the Taylor expansion near 0 ∈ V :

F (z) =
∞∑
k=0

akz
(2k+1). (1.36)

If f is C∞, then F is also C∞.

2. Symplectic forms in polar coordinates

2.1. We compute the flat symplectic form ω0 in the “polar coordinates”

{λ1 > · · · > λr > 0} × F → Vreg

((λ1, . . . , λr) , (e1, . . . , er)) 7→
∑

λjej .

If (z1, . . . , zn) (n = dimV ) are orthonormal coordinates for the Hermitian product
(u | v), then

ω0 = i
n∑

m=1

d zm ∧ d zm.

From

z =
r∑
j=1

λjej ,

we have

d zm ∧ d zm =
r∑

j,k=1

λjλk d ejm ∧ d ekm +
r∑

j,k=1

ejmekm dλj ∧ dλk

+
r∑

j,k=1

λk dλj ∧ (ejm d ekm − ekm d ejm) .

Using (ej | ek) = δjk, we get

ω0 =
r∑

j,k=1

λjλkωjk + 2
r∑

j,k=1

λk dλj ∧ ηjk, (2.1)
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where

ηjk =
i
2

n∑
m=1

(ejm d ekm − ekm d ejm)

∣∣∣∣∣
F

= i
n∑

m=1

ejm d ekm

∣∣∣∣∣
F

, (2.2)

ωjk = i
n∑

m=1

d ejm ∧ d ekm

∣∣∣∣∣
F

= d ηjk. (2.3)

We compute ηjk and ωjk using the description of TeF given in Proposition 1.
Let v, w ∈ TeF with v = (v1, . . . , vr), w = (w1, . . . , wr),

vj = iαjej + vj0 +
∑

1≤m≤r
m 6=j

vjm (1 ≤ j ≤ r),

wj = iβjej + wj0 +
∑

1≤m≤r
m 6=j

wjm (1 ≤ j ≤ r),

αj ∈ R, vj0 ∈ V0j(e), vjk ∈ Vjk(e),

βj ∈ R, wj0 ∈ V0j(e), wjk ∈ Vjk(e),

Q(e)vjk = −vkj , Q(e)wjk = −wkj (1 ≤ j < k ≤ r).

Then, as the Peirce subspaces are orthogonal w.r. to ( | ), we deduce from (2.2)-(2.3)

ηjj(e)(v) = i (ej | vj) = αj , (2.4)

ηjk(e)(v) = i (ej | vk) = 0 (j 6= k),

ωjk = d ηjk = 0 (j 6= k)

and

ωjj(e)(v, w) =
i
2

((vj | wj)− (wj | vj))

= 〈vj0 | wj0〉+
∑

1≤m≤r
m 6=j

〈vjm | wjm〉 , (2.5)

where 〈 | 〉 denotes the symplectic product

〈x | y〉 =
i
2

((x | y)− (y | x)) . (2.6)

Finally, we have

ω0 =
r∑
j=1

λ2
jωjj + 2

r∑
j=1

λj dλj ∧ ηjj , (2.7)

with ωjj and ηjj given by (2.5), (2.4). The expression (2.5) shows that the ωjj
(1 ≤ j ≤ r) are linearly independent at each point e ∈ F .

As

2 (Q(z)x | y) = (D(z, x)z | y) = (z | D(x, z)y)

= (z | D(y, z)x) = (D(z, y)z | x) = 2 (Q(z)y | x) ,

the Q operator satisfies

(Q(z)x | y) = (Q(z)y | x) , (2.8)

〈Q(z)x | y〉 = −〈x | Q(z)y〉 (2.9)
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for all z, x, y ∈ V .
For v, w ∈ TeF , using

Q(e)vjk = −vkj , Q(e)wjk = −wkj (1 ≤ j 6= k ≤ r),

we have then

〈vjk | wjk〉 = 〈Q(e)vkj | Q(e)wkj〉 = −
〈
vkj | Q(e)2wkj

〉
,

that is,

〈vjk | wjk〉 = −〈vkj | wkj〉 , (2.10)

as wkj ∈ V2(e) and Q(e) is involutive on V2(e). In view of (2.10), the flat symplectic
form ω0 in polar coordinates may be rewritten

ω0 =
r∑
j=1

λ2
jθj0 +

∑
j,k

1≤j<k≤r

(
λ2
j − λ2

k

)
θjk + 2

r∑
j=1

λj dλj ∧ ηjj , (2.11)

where the ηjj ’s are defined by (2.4), and the θj0’s and θjk’s by

θj0(e)(v, w) = 〈vj0 | wj0〉 , (1 ≤ j ≤ r), (2.12)

θjk(e)(v, w) = 〈vjk | wjk〉 (1 ≤ j < k ≤ r). (2.13)

for v, w ∈ TeF . Note that these forms are (pull-backs of) forms on the manifold of
frames F and that the θj0’s are 0 when the domain is of tube type.

2.2. We compute now the hyperbolic form ω− and the Fubini-Study form ω+ in
polar coordinates.

Using

B(z, z)−1vj0 =
(
1− λ2

j

)−1
vj0 (1 ≤ j ≤ r),

B(z, z)−1vjk =
(
1− λ2

j

)−1 (
1− λ2

k

)−1
vjk (1 ≤ j < k ≤ r),

B(z, z)−1ej =
(
1− λ2

j

)−2
ej (1 ≤ j ≤ r)

in (2.11), (2.12), (2.13), we obtain

ηjj(e)(B(z, z)−1v) =
(
1− λ2

j

)−2
ηjj(e)(v), (2.14)

θj0(e)(B(z, z)−1v, w) =
(
1− λ2

j

)−1
θj0(e)(v, w), (2.15)

θjk(e)(B(z, z)−1v, w) =
(
1− λ2

j

)−1 (
1− λ2

k

)−1
θjk(e)(v, w), (2.16)

for z = λ1e1 + · · ·+ λrer and v, w ∈ TeF . From (1.24):

ω−(z)(v, w) = ω0(B(z, z)−1v, w)

and the expression of ω0 in polar coordinates, we have

ω− =
r∑
j=1

λ2
j

1− λ2
j

θj0 +
∑
j,k

1≤j<k≤r

λ2
j − λ2

k(
1− λ2

j

)
(1− λ2

k)
θjk + 2

r∑
j=1

λj dλj(
1− λ2

j

)2 ∧ ηjj .
(2.17)
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In the same way, the Fubini-Study symplectic form on V is

ω+ =
r∑
j=1

λ2
j

1 + λ2
j

θj0 +
∑
j,k

1≤j<k≤r

λ2
j + λ2

k(
1 + λ2

j

)
(1 + λ2

k)
θjk + 2

r∑
j=1

λj dλj(
1 + λ2

j

)2 ∧ ηjj .
(2.18)

3. Symplectic duality

Consider the real analytic maps f =]− 1, 1[→ R and g : R→]− 1, 1[, inverse of
each other, defined by

f(t) =
t√

1− t2
(−1 < t < 1), (3.1)

g(t) =
t√

1 + t2
(t ∈ R). (3.2)

By the functional calculus described in Subsection 1.6, we associate to these maps
the real analytic diffeomorphisms, also inverse of each other

F = f̂ : Ω→ V,

G = ĝ : V → Ω,

where Ω is the bounded symmetric domain associated to the Jordan triple V . If
e = (e1, . . . , er) is a frame and z =

∑r
j=1 λjej , then

F (z) =
r∑
j=1

λj√
1− λ2

j

ej (z ∈ Ω), (3.3)

G(z) =
r∑
j=1

λj√
1 + λ2

j

ej (z ∈ V ). (3.4)

Using (1.16)-(1.20), the maps F and G may also be defined by

F (z) = B(z, z)−1/4z =
(

idV −
1
2
D(z, z)

)−1/2

z (z ∈ Ω), (3.5)

G(z) = B(z,−z)−1/4z =
(

idV −
1
2
D(z,−z)

)−1/2

z (z ∈ V ). (3.6)

The following theorem is the main result of [1]. We give here a different and
simpler proof, using the expression of the symplectic forms ω0, ω−, ω+ in generalized
polar coordinates.

Theorem 1. (Symplectic duality)

F ∗ω0 = ω−, F ∗ω+ = ω0, (3.7)

G∗ω0 = ω+, G∗ω− = ω0. (3.8)

Proof. In polar coordinates, the map F is written

((λ1, . . . , λr) , e) 7→ ((µ1, . . . , µr) , e)
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with

µj =
λj√

1− λ2
j

. (3.9)

As, by (2.11),

ω0 =
r∑
j=1

λ2
jθj0 +

∑
j,k

1≤j<k≤r

(
λ2
j − λ2

k

)
θjk + 2

r∑
j=1

λj dλj ∧ ηjj ,

we obtain, using (3.9),

F ∗ω0 =
r∑
j=1

λ2
j

1− λ2
j

θj0 +
∑
j,k

1≤j<k≤r

(
λ2
j

1− λ2
j

− λ2
k

1− λ2
k

)
θjk+

+ 2
r∑
j=1

λj dλj(
1− λ2

j

)2 ∧ ηjj ,
which, compared to (2.17), gives F ∗ω0 = ω− on the open dense subset Ωreg of
regular elements, and by continuity on all of Ω.

The relationG∗ω0 = ω+ is proved along the same lines. The relations F ∗ω+ = ω0

and G∗ω− = ω0 follow, as F and G are inverse of each other. �

In view of this theorem, the map F (or the map G = F−1) is called the duality
map.

Example 1. (Type I1,1) Here V = C, Ω is the unit disc,

ω0 =
i
2

d z ∧ d z, ω− =
i
2

d z ∧ d z
(1− zz)2 , ω+ =

i
2

d z ∧ d z
(1 + zz)2 .

The duality map is

F (z) =
z√

1− zz
.

Example 2. (Type I1,n) Here V = Cn with the Hermitian norm ‖z‖2 =
∑
zjzj , Ω

is the unit Hermitian ball,

ω0 =
i
2

∑
d zj ∧ d zj , ω− =

ω0(
1− ‖z‖2

)n+1 , ω+ =
ω0(

1 + ‖z‖2
)n+1 .

The duality map is

F (z) =
z√

1− ‖z‖2
.

4. The bisymplectomorphism group

4.1. In this section we study to which extent a diffeomorphism F : Ω → V satis-
fying the property (3.7) is unique. If two diffeomorphisms F1, F2 : Ω → V satisfy
(3.7), then F2 = F1 ◦ f , where f : Ω → Ω preserves ω0 and ω−. This leads us to
the following definition.
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Definition 1. A bisymplectomorphism of Ω is a diffeomorphism f : Ω→ Ω which
satisfies

f∗ω0 = ω0, (4.1)

f∗ω− = ω−. (4.2)

Clearly, bisymplectomorphisms of Ω form a group, which will be denoted by
B(Ω) and called the bisymplectomorphism group of Ω.

From (1.24), we derive a characterization of B(Ω) in terms of the Bergman
operator:

Proposition 2. Let Ω be a bounded symmetric domain. Then a diffeomorphism
f ∈ Diff(Ω) is a bisymplectomorphism if and only if it satisfies

f∗ω0 = ω0, (4.3)

B (f(z), f(z)) ◦ d f(z) = d f(z) ◦B(z, z) (z ∈ Ω). (4.4)

Note that the second condition implies that the tangent map d f(z) maps invari-
ant subspaces of Bz = B(z, z) to invariant subspaces of Bf(z), and that Bf(z) has
the same eigenvalues as Bz.

Proof. Let z ∈ Ω, u, v ∈ TzΩ. We have from (1.24) and (4.1)

ω−(z)(u, v) = ω0(B(z, z)−1u, sv)

= ω0(d f(z)B(z, z)−1u,d f(z)v),

(f∗ω−) (z)(u, v) = ω−(f(z))(d f(z)u,d f(z)v)

= ω0

(
B(f(z), f(z))−1 d f(z)u,d f(z)v

)
,

so that, assuming (4.1), the condition (4.2) is equivalent to

ω0(d f(z)B(z, z)−1u,d f(z)v) = ω0

(
B(f(z), f(z))−1 d f(z)u,d f(z)v

)
for all u, v. As ω0 is non singular and d f(z) is bijective, this is equivalent to

d f(z) ◦B(z, z)−1 = B(f(z), f(z))−1 ◦ d f(z),

that is, to (4.4). �

4.2. Here we study diffeomorphisms of Ω satisfying the condition (4.4). Recall that
Bz = B(z, z) : V → V is a C-linear operator, self-adjoint w.r. to the Hermitian
metric h0, positive if z ∈ Ω. Let r denote the rank of Ω and V .

For z ∈ Ω, consider the spectral decomposition

z = λ1e1 + λ2e2 + · · ·+ λses, 1 > λ1 > λ2 > · · · > λs > 0, (4.5)

where s = rk z ≤ r = rkV . An element is called regular if rk z = rkV ; for regular
elements, which form an open dense subset of Ω, the decomposition (4.5) is the
decomposition using generalized polar coordinates.

Let

V =
⊕

0≤i≤j≤s

Vij

be the simultaneous Peirce decomposition relative to (e1, . . . , es). Note that some
subspaces Vij may be 0. The operator B(z, z) may only have the eigenvalues

(1− λ2
i )

2 (1 ≤ i ≤ s), (1− λ2
i )(1− λ2

j ) (1 ≤ i < j ≤ s), (4.6)



THE BISYMPLECTOMORPHISM GROUP OF A BOUNDED SYMMETRIC DOMAIN 13

(1− λ2
i ) (1 ≤ i ≤ s), 1,

which occur respectively on the subspaces

Vii, Vij , V0i, V00. (4.7)

The relation (4.4) then implies that B(z, z) and B(f(z), f(z)) have the same
eigenvalues with the same multiplicities. Moreover, if all eigenvalues in the list
(4.6) occurring for non-zero Vij are different, the non-zero subspaces of the list
(4.7) are the eigenspaces of B(z, z) and are mapped by d f(z) to the corresponding
eigenspaces of B(f(z), f(z)).

Definition 2. Let Ω be an irreducible bounded symmetric domain and denote by
(V, { , , }) be the corresponding Jordan triple. An element z ∈ V is called super-
regular if z is regular and if all eigenvalue in the list (4.6), occurring on non-zero
Vij, are different.

If V is of tube type or of rank 1, any regular element z ∈ V is super-regular. If
V is not of tube type, an element z ∈ V is super-regular if it is regular and if its
spectral values satisfy

1− λ2
i 6=

(
1− λ2

j

)2
(4.8)

for all (i, j), i < j. Clearly, super-regular elements form an open dense subset of V .
Let z ∈ Ω be an element of rank one. Then the spectral decomposition of z is

z = λ1e1, 0 < λ1 < 1,

where e1 is a tripotent; the associated Peirce decomposition is

V11 = V2(e1), V01 = V1(e1), V00 = V0(e1)

and the eigenvalues of B(z, z) on these subspaces are respectively(
1− λ2

1

)2
, 1− λ2

1, 1.

It then follows that

f(z) = λ1ε1,

where ε1 is a tripotent such that V2(ε1) = d f(z)V2(e1), which means that e1 and
ε1 have the same height dimV2(e1) = dimV2(ε1). In particular, if e1 is minimal
(resp. maximal), then ε1 is minimal (resp. maximal).

Let Vz be the C-subspace generated by the odd powers z, . . . , z(2p+1), . . . Then
dimC Vz = rk z ≤ r, and dimC Vz = r if and only if z is a regular element. Denote

Pz = Vz ∩ Ω.

For z ∈ Ω, z 6= 0 with spectral decomposition z =
∑k
j=1 αjej (α1 > · · · > αk > 0;

k = rkV x), Pz is the k-polydisc

Pz =
{
u =

∑
ujej | |uj | < 1

}
.

Note that if u ∈ Pz and rkV u = rkV z, then Vu = Vz and Pu = Pz.

Lemma 3. Let f : Ω→ Ω be a diffeomorphism of Ω such that

B (f(z), f(z)) ◦ d f(z) = d f(z) ◦B(z, z)

for all z ∈ Ω. Then for all z ∈ Ω,

d f(z)Vz = Vf(z). (4.9)
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Proof. Let z be a super-regular element and let

z = α1e1 + · · ·+ αrer

be the spectral decomposition of z in V ; then Vz := Ce1 ⊕ · · · ⊕ Cer is the sum of
the eigenspaces of B(z, z) relative to the eigenvalues(

1− α2
j

)2
(1 ≤ j ≤ r),

so that it follows from (4.4) that

d f(z)Vz = Vf(z).

By continuity, (4.9) holds for all z ∈ Ω. �

Proposition 4. Let f : Ω→ Ω be a diffeomorphism of Ω such that

B (f(z), f(z)) ◦ d f(z) = d f(z) ◦B(z, z)

for all z ∈ Ω. Then for any element z ∈ Ω, z 6= 0, we have

f (Pz) = Pf(z).

Proof. Let s = rkV z. We already know that d f(z)Vz = Vf(z), which implies that
rkV f(z) = z. So there exist continuous functions βj such that

d f(z)u =
s∑
j=1

βj(u, z) (f(z))(2j+1) (z ∈ Ω, u ∈ Pz).

Consider a C1 path η : [0, 1] → Pz from η(0) = z to η(1) = w; let g(t) = f(η(t)).
Then g satisfies the differential equation

g′(t) =
s∑
j=1

βj(η′(t), η(t)) (g(t))(2j+1)
, (4.10)

g(0) = f(z).

Let

f(z) =
s∑

k=1

αkεk

be the spectral decomposition of f(z). Let h : [0, 1] → Cs be the solution of the
differential system

h′k(t) =
s∑
j=1

βj(η′(t), η(t)) (hk(t))2j+1) (1 ≤ k ≤ s),

hk(0) = αk.

Then the solution of (4.10) is

g(t) =
s∑

k=1

hk(t)εk,

which shows that g(1) = f(w) belongs to Pf(z). �

Let K denote the group of linear automorphisms of Ω.
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Proposition 5. Let f : Ω→ Ω be a diffeomorphism of Ω such that

B (f(z), f(z)) ◦ d f(z) = d f(z) ◦B(z, z)

for all z ∈ Ω. Then any K-orbit is globally invariant by f .

Proof. Assume first that z = λ1e1 + · · · + λrer is super regular. Then f(z) =
µ1ε1 + · · ·+µrεr, and equality between the eigenvalues of B(z, z) and B(f(z), f(z))
implies λj = µj , hence f(z) ∈ Kz and f(Kz) = Kz. By continuity, this also holds
for any z ∈ Ω. �

4.3. We now go back to bisysmplectomorphisms of Ω.

Proposition 6. Let Ω be a bounded circled symmetric domain and denote by K
the group of linear automorphisms of Ω. For each bisymplectomorphism f ∈ B(Ω),
we have d f(0) ∈ K.

As K ⊂ B(Ω), it will be sufficient to study the subgroup

B0(Ω) = {f ∈ B(Ω) | d f(0) = idV } . (4.11)

Proof. Let (e1, . . . , er) be a frame of V and let V =
⊕

Vij be the associated
simultaneous Peirce decomposition. Consider a regular element

z = α1e1 + · · ·+ αrer,

1 > α1 > · · · > αr > 0. For f ∈ B(Ω) and z super-regular, we have f(z) = α1ε1 +
· · · + αrεr, where (ε1, . . . , εr) is a frame of V , which may depend on (α1, . . . , αr).
As Vjj = Cej is the eigenspace of B(z, z) for the eigenvalue

(
1− α2

j

)2, we deduce
from (4.4) that

d f(z) (ej) ∈ Cεj .
By continuity, there exists a frame (e′1, . . . , e

′
r) such that

d f(0) (ej) ∈ Ce′j (1 ≤ j ≤ r).
Multiplying e′j by a suitable complex of modulus 1, we may assume that

d f(0) (ej) = λ′je
′
j , λ′j > 0 (1 ≤ j ≤ r). (4.12)

We have also

d f(0)(ej) = lim
t→0+

f(tej)
t

and f(tej) is a multiple of a minimal tripotent, with spectral norm ‖f(tej)‖ ≤
t ‖ej‖, hence ‖d f(0)(ej)‖ ≤ ‖ej‖ and λ′j ≤ 1. The same argument applied to
f−1 gives λ′j = 1. So the image of a frame (e1, . . . , er) under d f(0) is a frame
(e′1, . . . , e

′
r) and the Peirce spaces Vjk relative to (e1, . . . , er) are mapped by d f(0)

onto the corresponding Peirce spaces V ′jk relative to (e′1, . . . , e
′
r). In particular,

d f(0) is an R-linear map from Cej onto Ce′j . We have d f(0)(i ej) = βe′j , with
|β| = 1. As

ω0(u, v) =
i
2

(trD(u, v)− trD(v, u)) ,

we have

ω0(ej , i ej) = trD(ej , ej),

ω0 (d f(0) (ej) ,d f(0) (i ej)) = Imβ trD(e′j , e
′
j).
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From trD(e′j , e
′
j) = trD(ej , ej) and f∗ω0 = ω0, we get Imβ = 1, β = i, which

means that d f(0) is C-linear on Ce1 ⊕ · · · ⊕ Cer. Finally, d f(0) is C-linear on V ,
maps minimal tripotents to minimal tripotents and Ω to Ω. �

4.4. The unit disc. Let ∆ be the unit disc of C. The associated triple product is
{u, v, w} = 2uvw. The Bergman operator is B(z, z)w = (1−|z|2)2w. The Bergman
metric is

hz(u, v) =
2uv

(1− |z|2)2
.

The two symplectic forms are

ω0 = i d z ∧ d z, (4.13)

ω− =
ω0

(1− |z|2)2
. (4.14)

Denote by S1 the unit circle in C and consider the “polar coordinates” diffeomor-
phism

Θ : (0, 1)× S1 → ∆ \ {0},
(r, ζ) 7→ rζ.

Then we have

Θ∗ω0 = 2r d r ∧ d ζ
i ζ
.

The following theorem characterizes the elements of B(∆).

Theorem 2. The elements f ∈ B(∆) are the maps defined by

f(z) = u
(
|z|2
)
z (z ∈ ∆) ,

where u is a smooth function u : [0, 1)→ S1 ' U(1).

In other words, the restriction of f to a circle of radius r (0 < r < 1) is the
rotation u

(
r2
)
.

Proof. From (4.14), we see that a diffeomorphism f : ∆→ ∆ is a bisymplectomor-
phism if and only if f preserves ω0 and |f(z)| = |z| for all z ∈ ∆.

If |f(z)| = |z| for all z ∈ ∆, the map F = Θ−1 ◦ f ◦Θ may be written

(r, ζ) F→ (r, Z(r, ζ))

for some smooth function Z : (0, 1)× S1 → S1. We have

F ∗ (Θ∗ω0) = 2r d r ∧ dZ
iZ

= 2r d r ∧ dζ Z
iZ

.

If f preserves ω0, then F preserves Θ∗ω0, which implies
dζ Z
Z

=
d ζ
ζ
. (4.15)

For r fixed, let ur(ζ) = Z(r, ζ) ; the condition (4.15) is then equivalent to
dur
ur

=
d ζ
ζ

(4.16)

for all r ∈ (0, 1). The condition (4.16) is in turn equivalent to

ur(ζ) = v(r)ζ, (4.17)
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with v(r) ∈ S1. The function v, which is given by

v(r) =
Z(r, ζ)
ζ

,

is smooth on (0, 1) and

f(rζ) = rv(r)ζ,

or

f(z) = v (|z|) z (4.18)

for z ∈ ∆, z 6= 0; on the other hand, f(0) = 0. Let g be the restriction of f to
(−1, 1); from (4.18), we see that g is odd. For x 6= 0, we have

g(x) =
∫ 1

0

d
d s

g(sx) d s = x

∫ 1

0

g′(sx) d s,

which shows that

v(r) =
∫ 1

0

g′(sr) d s

extends to a smooth even function v : (−1, 1)→ S1. Let u : [0, 1)→ S1 be defined
by

u(r) = v
(√
r
)
.

It follows then from Whitney’s theorem [5] that u is smooth at 0.
Conversely, if

f(z) = u(|z|2)z,

with u : [0, 1) → S1 smooth, then f satisfies |f(z)| = |z|, f is a diffeomorphism
with inverse f−1(w) = u(|w|2)−1w; also, f preserves ω0 on ∆ \ {0}, hence on ∆ by
continuity. This implies that f ∈ B(∆). �

4.5. The polydisc. Let ∆r ⊂ Cr be the product of r unit discs. The Jordan triple
product on V = Cr is just the component-wise product

{x, y, z} = 2 (x1y1z1, . . . , xryrzr) .

Let (e1, . . . , er) denote the canonical basis of Cr. The minimal tripotents of V
are the elements λjej , 1 ≤ j ≤ r, |λj | = 1. Any frame (maximal ordered set of
mutually orthogonal tripotents) has the form(

λjeσ(j)

)
1≤j≤r ,

where |λj | = 1 and σ ∈ Sr is a permutation of {1, · · · , r}. The corresponding
Peirce decomposition is V = Ceσ(1) ⊕ · · · ⊕ Ceσ(r).

Theorem 3. A diffeomorphism f : ∆r → ∆r belongs to B0 (∆r) if and only if
there exist smooth functions uj : [0, 1)→ S1 such that uj(0) = 1 and

f (z1, . . . , zr) =
r∑
j=1

uj
(
|zj |2

)
zjej (zj ∈ ∆) . (4.19)
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Proof. Let f ∈ B0(∆r) be a bisymplectomorphism with d f(0) = idV . Consider a
regular element z ∈ ∆r, that is,

z = z1e1 + · · ·+ zrer,

with all |zj | different. The spaces Cej of the corresponding Peirce decomposition are
mapped by d f(z) to the spaces Ceσ(j) of another Peirce decomposition, for some
permutation σ ∈ Sr. This means that [d f(z) (ej)] =

[
eσ(j)

]
for all regular z ∈ ∆r,

where [ ] denotes the class in P(Cr); by continuity, this is true for all z ∈ ∆r. As
{[e1] , . . . , [er]} is discrete in P(Cr) and d f(0) = id, we have [d f(z) (ej)] = [ej ] and

d f(z) (Cej) = Cej (4.20)

for all z ∈ ∆r. This shows that f (z1, . . . , zr) =
∑r
j=1 fj(z)ej , with |fj(z)| = |zj |.

From (4.20), we deduce that fj depends only of zj . Each fj is then a bisymplecto-
morphism of the unit disc. According to Theorem 2, there exists a smooth function
uj : [0, 1)→ S1 ' U(1) such that

fj(zj) = uj
(
|zj |2

)
zj (zj ∈ ∆) .

Finally, any f ∈ B0(∆r) has the form (4.19).
Conversely, each f of the form (4.19) is easily seen to be a bisymplectomorphism.

�

4.6. The general case. We assume now that the domain Ω is irreducible, that
is, not a product of two bounded symmetric domains. In Theorem 4, we will
characterize the bisymplectomorphisms of Ω. This theorem may be considered as
a kind of Schwarz lemma.

Let f ∈ B0(Ω). If z =
∑
λjej is a regular element, then Pz = (Ce1 ⊕ · · · ⊕ Cer)∩

Ω and f (Pz) = Pz. For a frame e = (e1, . . . , er), let P (e) = (Ce1 ⊕ · · · ⊕ Cer) ∩Ω.
By the same argument as in the proof of Theorem 3, the restriction of f to P (e)
has the form

r∑
j=1

λjej 7→
∑

λjuj
(
|λj |2

)
ej ,

where the uj ’s are smooth functions uj : [0, 1) → S1 ' U(1). In the “polar
coordinates” ((λ1, . . . , λr) , e = (e1, . . . , er)), the map f is then represented by

((λ1, . . . , λr) , e) 7→
(
(λ1, . . . , λr) ,

(
u1

(
λ2

1, e
)
e1, . . . , ur

(
λ2
r, e
)
er
))
. (4.21)

Let wj (λj , e) = uj
(
λ2
j , e
)
. We obtain

f∗ηjj = i f∗
n∑

m=1

ejm d ejm = i
n∑

m=1

wjejm (wj d ejm + ejm dwj)

= ηjj − i (ej | ej)
dwj
wj

,

f∗ωjj = ωjj .

As Ω is irreducible, (ej | ej) has the same value g for all minimal tripotents. Finally

f∗ω0 =
r∑
j=1

λ2
jωjj + 2

r∑
j=1

λj dλj ∧
(
ηjj − i g

dwj
wj

)
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= ω0 − 2 i g
r∑
j=1

λj dλj ∧
dwj
wj

.

Then f∗ω0 = ω0 implies that f ∈ B0(Ω), written in the form (4.21), satisfies
r∑
j=1

λj dλj ∧
dwj
wj

= 0. (4.22)

As wj depends only on λj and e, this implies that de wj = 0. As the manifold
of frames is connected when the domain Ω is irreducible, wj does not depend on
e ∈ F . As a permutation of a frame is again a frame, we have w1 = · · · = wr and
u1 = · · · = ur.

Finally, an element f ∈ B0(Ω) is written in polar coordinates

((λ1, . . . , λr) , (e1, . . . , er)) 7→
(
(λ1, . . . , λr) ,

(
u
(
λ2

1

)
e1, . . . , u

(
λ2
r

)
er
))
,

(4.23)

where u is a smooth function u : [0, 1)→ S1 ' U(1).

Theorem 4. Let Ω be an irreducible Hermitian bounded circled symmetric domain
and let K be the isotropy group of 0. The analytic (resp. C∞) bisymplectomor-
phisms of Ω are the maps φ = f ◦ g, where g = dφ(0) ∈ K and f is associated to
v(t) = tu(t2), with u : [0, 1)→ S1 ' U(1) analytic (resp. C∞) and u(0) = 1.
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