329 research outputs found

    A Dynamic Model of Cascades on Random Networks with a Threshold Rule

    Full text link
    Cascades on random networks are typically analyzed by assuming they map onto percolation processes and then are solved using generating function formulations. This approach assumes that the network is infinite and weakly connected, yet furthermore approximates a dynamic cascading process as a static percolation event. In this paper we propose a dynamic Markov model formulation that assumes a finite network with arbitrary average nodal degree. We apply it to the case where cascades follow a threshold rule, that is, that a node will change state ("flip") only if a fraction, exceeding a given threshold, of its neighbors has changed state previously. The corresponding state transition matrix, recalculated after each step, records the probability that a node of degree k has i flipped neighbors after j steps in the cascade's evolution. This theoretical model reproduces a number of behaviors observed in simulations but not yet reported in the literature. These include the ability to predict cascades in a domain previously predicted to forbid cascades without assuming that the network is locally tree-like, and, due to the dynamic nature of the model, a "near death" behavior in which cascades initially appear about to die but later explode. Cascades in the "no cascades" region require a sufficiently large seed of initially flipped nodes whose size scales with the size of the network or else the cascade will die out. Our theory also predicts the well known properties of cascades, for instance that a single node seed can start a global cascade in the appropriate regime regardless of the (finite) size of the network. The theory and simulations developed here are compared with a foundational paper by Watts which used generating function theory.Comment: Rev 1: Added citation to prior work by Gleeson and Cahalane. Revised abstract to sui

    Action at a distance as a full-value solution of Maxwell equations: basis and application of separated potential's method

    Full text link
    The inadequacy of Li\'{e}nard-Wiechert potentials is demonstrated as one of the examples related to the inconsistency of the conventional classical electrodynamics. The insufficiency of the Faraday-Maxwell concept to describe the whole electromagnetic phenomena and the incompleteness of a set of solutions of Maxwell equations are discussed and mathematically proved. Reasons of the introduction of the so-called ``electrodynamics dualism concept" (simultaneous coexistence of instantaneous Newton long-range and Faraday-Maxwell short-range interactions) have been displayed. It is strictly shown that the new concept presents itself as the direct consequence of the complete set of Maxwell equations and makes it possible to consider classical electrodynamics as a self-consistent and complete theory, devoid of inward contradictions. In the framework of the new approach, all main concepts of classical electrodynamics are reconsidered. In particular, a limited class of motion is revealed when accelerated charges do not radiate electromagnetic field.Comment: ReVTeX file, 24pp. Small corrections which do not have influence results of the paper. Journal reference is adde

    Lifting the Dusty Veil II: A Large-Scale Study of the Galactic Infrared Extinction Law

    Full text link
    We combine near-infrared (2MASS) and mid-infrared (Spitzer-IRAC) photometry to characterize the IR extinction law (1.2-8 microns) over nearly 150 degrees of contiguous Milky Way midplane longitude. The relative extinctions in 5 passbands across these wavelength and longitude ranges are derived by calculating color excess ratios for G and K giant red clump stars in contiguous midplane regions and deriving the wavelength dependence of extinction in each one. Strong, monotonic variations in the extinction law shape are found as a function of angle from the Galactic center, symmetric on either side of it. These longitudinal variations persist even when dense interstellar regions, known a priori to have a shallower extinction curve, are removed. The increasingly steep extinction curves towards the outer Galaxy indicate a steady decrease in the absolute-to-selective extinction ratio (R_V) and in the mean dust grain size at greater Galactocentric angles. We note an increasing strength of the 8 micron extinction inflection at high Galactocentric angles and, using theoretical dust models, show that this behavior is consistent with the trend in R_V. Along several lines of sight where the solution is most feasible, A_lambda/A_Ks as a function of Galactic radius is estimated and shown to have a Galactic radial dependence. Our analyses suggest that the observed relationship between extinction curve shape and Galactic longitude is due to an intrinsic dependence of the extinction law on Galactocentric radius.Comment: Accepted to Ap

    The Bubbling Galactic Disk

    Get PDF
    A visual examination of the images from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) has revealed 322 partial and closed rings that we propose represent partially or fully enclosed three-dimensional bubbles. We argue that the bubbles are primarily formed by hot young stars in massive star formation regions. We have found an average of about 1.5 bubbles per square degree. About 25% of the bubbles coincide with known radio H II regions, and about 13% enclose known star clusters. It appears that B4-B9 stars (too cool to produce detectable radio H II regions) probably produce about three-quarters of the bubbles in our sample, and the remainder are produced by young O-B3 stars that produce detectable radio H II regions. Some of the bubbles may be the outer edges of H II regions where PAH spectral features are excited and may not be dynamically formed by stellar winds. Only three of the bubbles are identified as known SNRs. No bubbles coincide with known planetary nebulae or W-R stars in the GLIMPSE survey area. The bubbles are small. The distribution of angular diameters peaks between 1' and 3' with over 98% having angular diameters less than 10' and 88% less than 4'. Almost 90% have shell thicknesses between 0.2 and 0.4 of their outer radii. Bubble shell thickness increases approximately linearly with shell radius. The eccentricities are rather large, peaking between 0.6 and 0.7; about 65% have eccentricities between 0.55 and 0.85

    GLIMPSE: I. A SIRTF Legacy Project to Map the Inner Galaxy

    Full text link
    GLIMPSE (Galactic Legacy Infrared Mid-Plane Survey Extraordinaire), a SIRTF Legacy Science Program, will be a fully sampled, confusion-limited infrared survey of the inner two-thirds of the Galactic disk with a pixel resolution of \~1.2" using the Infrared Array Camera (IRAC) at 3.6, 4.5, 5.8, and 8.0 microns. The survey will cover Galactic latitudes |b| <1 degree and longitudes |l|=10 to 65 degrees (both sides of the Galactic center). The survey area contains the outer ends of the Galactic bar, the Galactic molecular ring, and the inner spiral arms. The GLIMPSE team will process these data to produce a point source catalog, a point source data archive, and a set of mosaicked images. We summarize our observing strategy, give details of our data products, and summarize some of the principal science questions that will be addressed using GLIMPSE data. Up-to-date documentation, survey progress, and information on complementary datasets are available on the GLIMPSE web site: www.astro.wisc.edu/glimpse.Comment: Description of GLIMPSE, a SIRTF Legacy project (Aug 2003 PASP, in press). Paper with full res.color figures at http://www.astro.wisc.edu/glimpse/glimpsepubs.htm

    Neural correlates of enhanced visual short-term memory for angry faces: An fMRI study

    Get PDF
    Copyright: © 2008 Jackson et al.Background: Fluid and effective social communication requires that both face identity and emotional expression information are encoded and maintained in visual short-term memory (VSTM) to enable a coherent, ongoing picture of the world and its players. This appears to be of particular evolutionary importance when confronted with potentially threatening displays of emotion - previous research has shown better VSTM for angry versus happy or neutral face identities.Methodology/Principal Findings: Using functional magnetic resonance imaging, here we investigated the neural correlates of this angry face benefit in VSTM. Participants were shown between one and four to-be-remembered angry, happy, or neutral faces, and after a short retention delay they stated whether a single probe face had been present or not in the previous display. All faces in any one display expressed the same emotion, and the task required memory for face identity. We find enhanced VSTM for angry face identities and describe the right hemisphere brain network underpinning this effect, which involves the globus pallidus, superior temporal sulcus, and frontal lobe. Increased activity in the globus pallidus was significantly correlated with the angry benefit in VSTM. Areas modulated by emotion were distinct from those modulated by memory load.Conclusions/Significance: Our results provide evidence for a key role of the basal ganglia as an interface between emotion and cognition, supported by a frontal, temporal, and occipital network.The authors were supported by a Wellcome Trust grant (grant number 077185/Z/05/Z) and by BBSRC (UK) grant BBS/B/16178

    The Frequency of Mid-Infrared Excess Sources in Galactic Surveys

    Get PDF
    We have identified 230 Tycho-2 Spectral Catalog stars that exhibit 8 micron mid-infrared extraphotospheric excesses in the MidCourse Space Experiment (MSX) and Spitzer Space Telescope Galactic Legacy MidPlane Survey Extraordinaire (GLIMPSE) surveys. Of these, 183 are either OB stars earlier than B8 in which the excess plausibly arises from a thermal bremsstrahlung component or evolved stars in which the excess may be explained by an atmospheric dust component. The remaining 47 stars have spectral classifications B8 or later and appear to be main sequence or late pre-main-sequence objects harboring circumstellar disks. Six of the 47 stars exhibit multiple signatures characteristic of pre-main-sequence circumstellar disks, including emission lines, near-infrared K-band excesses, and X-ray emission. Approximately one-third of the remaining 41 sources have emission lines suggesting relative youth. Of the 25 GLIMPSE stars with SST data at >24 microns, 20 also show an excess at 24 microns. Three additional objects have 24 micron upper limits consistent with possible excesses, and two objects have photospheric measurements at 24 microns. Six MSX sources had a measurement at wavelengths >8 microns. We modeled the excesses in 26 stars having two or more measurements in excess of the expected photospheres as single-component blackbodies. We determine probable disk temperatures and fractional infrared luminosities in the range 191 < T < 787 and 3.9x10^-4 < L_IR/L_* < 2.7x10^-1. We estimate a lower limit on the fraction of Tycho-2 Spectral Catalog main-sequence stars having mid-IR, but not near-IR, excesses to be 1.0+-0.3%.Comment: Accepted to Ap

    A Spitzer Study of Asymptotic Giant Branch Stars. III. Dust Production and Gas Return in Local Group Dwarf Irregular Galaxies

    Full text link
    We present the third and final part of a census of Asymptotic Giant Branch (AGB) stars in Local Group dwarf irregular galaxies. Papers I and II presented the results for WLM and IC 1613. Included here are Phoenix, LGS 3, DDO 210, Leo A, Pegasus dIrr, and Sextans A. Spitzer photometry at 3.6, 4.5, 5.8, and 8 are presented, along with a more thorough treatment of background galaxy contamination than was presented in papers I and II. We find that at least a small population of completely optically obscured AGB stars exists in each galaxy, regardless of the galaxy's metallicity, but that higher-metallicity galaxies tend to harbor more stars with slight IR excesses. The optical incompleteness increases for the redder AGB stars, in line with the expectation that some AGB stars are not detected in the optical due to large amounts of extinction associated with in situ dust production. Overall, there is an underrepresentation of 30% - 40% in the optical AGB within the 1 sigma errors for all of the galaxies in our sample. This undetected population is large enough to affect star formation histories derived from optical color-magnitude diagrams. As measured from the [3.6] - [4.5] color excesses, we find average stellar mass-loss rates ranging from 3.1E-7 - 6.6E-6 solar masses per year, and integrated galaxy mass-loss rates ranging from 4.4E-5 - 1.4E-3 solar masses per year. The integrated mass-loss rate is sufficient to sustain the current star formation rate in only LGS 3 and DDO 210, requiring either significant non-dusty mass loss or gas accretion in Phoenix, Leo A, Pegasus dIrr, Sextans A, WLM, and IC 1613 if they are to maintain their status as gas-rich galaxies.Comment: 25 pages, 17 figures, 9 tables, Accepted for publication in ApJ; updated affiliation for Boye

    A GLIMPSE of the Southern Jellyfish Nebula and Its Massive YSO

    Get PDF
    In Spitzer/IRAC images obtained under the GLIMPSE Legacy Survey, we have identified a unique and provocative nebular object we call the "Southern Jellyfish Nebula." The Southern Jellyfish Nebula is characterized by a fan of narrow tendrils with extreme length-to-width ratios that emanate from the vicinity of a bright infrared point source embedded in a smaller resolved nebula. From CO observations of the Nebula's morphologically associated molecular cloud, we have derived a kinematic distance of 5.7 ± 0.8 kpc and a cloud mass of 3.2 ± 0.9 × 10^3 M_⊙. The tendril-like ropes of the Nebula have widths of ~0.1 pc and lengths of up to ~2 pc. We have integrated the infrared spectral energy distribution (SED) of the point source to establish it as a massive young stellar object (MYSO), most likely forming alone, but possibly masking fainter cluster members. The shape of the SED is consistent with the shape of a late Class 0 SED model. Based on its far-IR luminosity of 3.3 ± 0.9 × 10^4 L_⊙, the Southern Jellyfish's MYSO has a zero-age main sequence (ZAMS) spectral type of B0. Given the curious nature of this nebula, we suspect its peculiar IR-bright structure is directly related to its current state of star formation

    Avoiding moving obstacles

    Get PDF
    To successfully move our hand to a target, we must consider how to get there without hitting surrounding objects. In a dynamic environment this involves being able to respond quickly when our relationship with surrounding objects changes. People adjust their hand movements with a latency of about 120 ms when the visually perceived position of their hand or of the target suddenly changes. It is not known whether people can react as quickly when the position of an obstacle changes. Here we show that quick responses of the hand to changes in obstacle position are possible, but that these responses are direct reactions to the motion in the surrounding. True adjustments to the changed position of the obstacle appeared at much longer latencies (about 200 ms). This is even so when the possible change is predictable. Apparently, our brain uses certain information exceptionally quickly for guiding our movements, at the expense of not always responding adequately. For reaching a target that changes position, one must at some time move in the same direction as the target did. For avoiding obstacles that change position, moving in the same direction as the obstacle is not always an adequate response, not only because it may be easier to avoid the obstacle by moving the other way, but also because one wants to hit the target after passing the obstacle. Perhaps subjects nevertheless quickly respond in the direction of motion because this helps avoid collisions when pressed for time. © 2008 Springer-Verlag
    corecore