208 research outputs found

    Perspectives on the Professional Communication Profile and Needs of Emerging Occupational Therapists of the Millennial Generation: A Comparison Study

    Get PDF
    Background: Millennials, born between 1982­ and 2000, became the largest share of the American workforce in 2015. As of 2014, 23.9% of American occupational therapists were under the age of 30. Positive traits ascribed to millennials include: highly educated, ambitious, confident, and optimistic. However, indicators of challenges for managing millennials emerge from media and anecdotal evidence, including stereotypes of disloyalty, entitlement, dependency, and casualness. Relevant for supporting professional development is a call to understand and enhance professional communication. Method: This study analyzed how emerging millennial occupational therapists self-describe their professional communication profile and needs, compared to the perspective of managers, while aiming to describe the accuracy of communication stereotypes. Occupational therapy managers and emerging occupational therapists of the millennial generation completed an online researcher-created survey. Results: Comparison of means revealed statistically significant differences, with the most significance noted on items reflecting professional communication skills of millennial occupational therapists. Conclusion: Analysis of results suggested support for some stereotypes and inaccuracy of others, painting a unique picture of the professional communication profile of millennial occupational therapists. Results from this small-population survey study may inform professional development opportunities for academic and fieldwork educators and occupational therapy managers related to the communication profile and needs of emerging occupational therapists through the lens of generational theory

    Parallel-plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells under Laminar Flow Shear Stress

    Get PDF
    The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses1. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs2,3. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy5. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12)6

    Autologous Endothelial Progenitor Cell-Seeding Technology and Biocompatibility Testing For Cardiovascular Devices in Large Animal Model

    Get PDF
    Implantable cardiovascular devices are manufactured from artificial materials (e.g. titanium (Ti), expanded polytetrafluoroethylene), which pose the risk of thromboemboli formation1,2,3. We have developed a method to line the inside surface of Ti tubes with autologous blood-derived human or porcine endothelial progenitor cells (EPCs)4. By implanting Ti tubes containing a confluent layer of porcine EPCs in the inferior vena cava (IVC) of pigs, we tested the improved biocompatibility of the cell-seeded surface in the prothrombotic environment of a large animal model and compared it to unmodified bare metal surfaces5,6,7 (Figure 1). This method can be used to endothelialize devices within minutes of implantation and test their antithrombotic function in vivo

    Sclerostin neutralization unleashes the osteoanabolic effects of Dkk1 inhibition

    Get PDF
    The WNT pathway has become an attractive target for skeletal therapies. High-bone-mass phenotypes in patients with loss-of-function mutations in the LRP5/6 inhibitor Sost (sclerosteosis), or in its downstream enhancer region (van Buchem disease), highlight the utility of targeting Sost/sclerostin to improve bone properties. Sclerostin-neutralizing antibody is highly osteoanabolic in animal models and in human clinical trials, but antibody-based inhibition of another potent LRP5/6 antagonist, Dkk1, is largely inefficacious for building bone in the unperturbed adult skeleton. Here, we show that conditional deletion of Dkk1 from bone also has negligible effects on bone mass. Dkk1 inhibition increases Sost expression, suggesting a potential compensatory mechanism that might explain why Dkk1 suppression lacks anabolic action. To test this concept, we deleted Sost from osteocytes in, or administered sclerostin neutralizing antibody to, mice with a Dkk1-deficient skeleton. A robust anabolic response to Dkk1 deletion was manifest only when Sost/sclerostin was impaired. Whole-body DXA scans, μCT measurements of the femur and spine, histomorphometric measures of femoral bone formation rates, and biomechanical properties of whole bones confirmed the anabolic potential of Dkk1 inhibition in the absence of sclerostin. Further, combined administration of sclerostin and Dkk1 antibody in WT mice produced a synergistic effect on bone gain that greatly exceeded individual or additive effects of the therapies, confirming the therapeutic potential of inhibiting multiple WNT antagonists for skeletal health. In conclusion, the osteoanabolic effects of Dkk1 inhibition can be realized if sclerostin upregulation is prevented. Anabolic therapies for patients with low bone mass might benefit from a strategy that accounts for the compensatory milieu of WNT inhibitors in bone tissue

    The history of falls and the association of the timed up and go test to falls and near-falls in older adults with hip osteoarthritis

    Get PDF
    Abstract Background Falling accounts for a significant number of hospital and long-term care admissions in older adults. Many adults with the combination of advancing age and functional decline associated with lower extremity osteoarthritis (OA), are at an even greater risk. The purpose of this study was to describe fall and near-fall history, location, circumstances and injuries from falls in a community-dwelling population of adults over aged 65 with hip OA and to determine the ability of the timed up and go test (TUG) to classify fallers and near-fallers. Method A retrospective observational study of 106 older men and women with hip pain for six months or longer, meeting a clinical criteria for the presence of hip OA at one or both hips. An interview for fall and near-fall history and administration of the TUG were administered on one occasion. Results Forty-five percent of the sample had at least one fall in the past year, seventy-seven percent reported occasional or frequent near-falls. The majority of falls occurred during ambulation and ascending or descending steps. Forty percent experienced an injury from the fall. The TUG was not associated with history of falls, but was associated with near-falls. Higher TUG scores occurred for those who were older, less mobile, and with greater number of co-morbidities. Conclusion A high percentage of older adults with hip OA experience falls and near-falls which may be attributed to gait impairments related to hip OA. The TUG could be a useful screening instrument to predict those who have frequent near-falls, and thus might be useful in predicting risk of future falls in this population.</p

    Intended Consequences Statement in Conservation Science and Practice

    Get PDF
    As the biodiversity crisis accelerates, the stakes are higher for threatened plants and animals. Rebuilding the health of our planet will require addressing underlying threats at many scales, including habitat loss and climate change. Conservation interventions such as habitat protection, management, restoration, predator control, trans location, genetic rescue, and biological control have the potential to help threatened or endangered species avert extinction. These existing, well-tested methods can be complemented and augmented by more frequent and faster adoption of new technologies, such as powerful new genetic tools. In addition, synthetic biology might offer solutions to currently intractable conservation problems. We believe that conservation needs to be bold and clear-eyed in this moment of great urgency

    Signalling plasticity and energy saving in a tropical bushcricket

    Get PDF
    Males of the tropical bushcricket Mecopoda elongata synchronize their acoustic advertisement signals (chirps) in interactions with other males. However, synchrony is not perfect and distinct leader and follower roles are often maintained. In entrainment experiments in which conspecific signals were presented at various rates, chirps displayed as follower showed notable signal plasticity. Follower chirps were shortened by reducing the number and duration of syllables, especially those of low and medium amplitude. The degree of shortening depended on the time delay between leader and follower signals and the sound level of the entraining stimulus. The same signal plasticity was evident in male duets, with the effect that the last syllables of highest amplitude overlapped more strongly. Respiratory measurements showed that solo singing males producing higher chirp rates suffered from higher metabolic costs compared to males singing at lower rates. In contrast, respiratory rate was rather constant during a synchronous entrainment to a conspecific signal repeated at various rates. This allowed males to maintain a steady duty cycle, associated with a constant metabolic rate. Results are discussed with respect to the preference for leader signals in females and the possible benefits males may gain by overlapping their follower signals in a chorus
    corecore