41 research outputs found

    Some (dis)assembly required: partial unfolding in the Par-6 allosteric switch

    Get PDF
    Allostery is commonly described as a functional connection between two distant sites in a protein, where a binding event at one site alters affinity at the other. Here, we review the conformational dynamics that encode an allosteric switch in the PDZ domain of Par-6, which is a scaffold protein that organizes other proteins into a complex required to initiate and maintain cell polarity. NMR measurements revealed that the PDZ domain samples an evolutionarily conserved unfolding intermediate allowing rearrangement of two adjacent loop residues that control ligand binding affinity. Cdc42 binding to Par-6 creates a novel interface between the PDZ domain and the adjoining CRIB motif that stabilizes the high-affinity PDZ conformation. Thermodynamic and kinetic studies suggest that partial PDZ unfolding is an integral part of the Par-6 switching mechanism. The Par-6 CRIB-PDZ module illustrates two important structural aspects of protein evolution: the interface between adjacent domains in the same protein can give rise to allosteric regulation, and thermodynamic stability may be sacrificed to increase the sampling frequency of an unfolding intermediate required for conformational switching.National Institutes of Health (U.S.) (grants R01 AI058072, R56 AI013225, and S10 RR024665

    Allosteric Activation of the Par-6 PDZ Via a Partial Unfolding Transition

    Get PDF
    Proteins exist in a delicate balance between the native and unfolded states, where thermodynamic stability may be sacrificed to attain the flexibility required for efficient catalysis, binding, or allosteric control. Partition-defective 6 (Par-6) regulates the Par polarity complex by transmitting a GTPase signal through the Cdc42/Rac interaction binding PSD-95/Dlg/ZO-1 (CRIB-PDZ) module that alters PDZ ligand binding. Allosteric activation of the PDZ is achieved by local rearrangement of the L164 and K165 side chains to stabilize the interdomain CRIB:PDZ interface and reposition a conserved element of the ligand binding pocket. However, microsecond to millisecond dynamics measurements revealed that L164/K165 exchange requires a larger rearrangement than expected. The margin of thermodynamic stability for the PDZ domain is modest (∼3 kcal/mol) and further reduced by transient interactions with the disordered CRIB domain. Measurements of local structural stability revealed that tertiary contacts within the PDZ are disrupted by a partial unfolding transition that enables interconversion of the L/K switch. The unexpected participation of partial PDZ unfolding in the allosteric mechanism of Par-6 suggests that native-state unfolding may be essential for the function of other marginally stable proteins

    Evolution of an ancient protein function involved in organized multicellularity in animals.

    Get PDF
    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals

    P. aeruginosa SGNH Hydrolase-Like Proteins AlgJ and AlgX Have Similar Topology but Separate and Distinct Roles in Alginate Acetylation

    Get PDF
    The O-acetylation of polysaccharides is a common modification used by pathogenic organisms to protect against external forces. Pseudomonas aeruginosa secretes the anionic, O-acetylated exopolysaccharide alginate during chronic infection in the lungs of cystic fibrosis patients to form the major constituent of a protective biofilm matrix. Four proteins have been implicated in the O-acetylation of alginate, AlgIJF and AlgX. To probe the biological function of AlgJ, we determined its structure to 1.83 Ã… resolution. AlgJ is a SGNH hydrolase-like protein, which while structurally similar to the N-terminal domain of AlgX exhibits a distinctly different electrostatic surface potential. Consistent with other SGNH hydrolases, we identified a conserved catalytic triad composed of D190, H192 and S288 and demonstrated that AlgJ exhibits acetylesterase activity in vitro. Residues in the AlgJ signature motifs were found to form an extensive network of interactions that are critical for O-acetylation of alginate in vivo. Using two different electrospray ionization mass spectrometry (ESI-MS) assays we compared the abilities of AlgJ and AlgX to bind and acetylate alginate. Binding studies using defined length polymannuronic acid revealed that AlgJ exhibits either weak or no detectable polymer binding while AlgX binds polymannuronic acid specifically in a length-dependent manner. Additionally, AlgX was capable of utilizing the surrogate acetyl-donor 4-nitrophenyl acetate to catalyze the O-acetylation of polymannuronic acid. Our results, combined with previously published in vivo data, suggest that the annotated O-acetyltransferases AlgJ and AlgX have separate and distinct roles in O-acetylation. Our refined model for alginate acetylation places AlgX as the terminal acetlytransferase and provides a rationale for the variability in the number of proteins required for polysaccharide O-acetylation

    Genetic Characterization of Physical Activity Behaviours in University Students Enrolled in Kinesiology Degree Programs

    Get PDF
    Studies of physical activity behaviours have increasingly shown the importance of heritable factors such as genetic variation. Non-synonymous polymorphisms of alpha-actinin 3 (ACTN3) and the ÃŽË›-adrenergic receptors 1 and 3 (ADRB) have been previously associated with exercise capacity and cardiometabolic health. We thus hypothesized that these polymorphisms are also related to physical activity behaviors in young adults. To test this hypothesis we examined relationships between ACTN3 (R577X), ARDB1 (Arg389Gly) and ADRB3 (Trp64Arg), and physical activity behaviors in university students. We stratified for student enrollment in kinesiology degree programs compared to non-majors as we previously found this to be a predictor of physical activity. We did not identify novel associations between physical activity and ACTN3. However, the minor alleles of ADRB1 and ADRB3 were significantly underrepresented in kinesiology students compared to non-majors. Furthermore, carriers of the ADRB1 minor allele reported reduced participation in moderate physical activity and increased afternoon fatigue compared to ancestral allele homozygotes. Together, these findings suggest that the heritability of physical activity behaviours in young adults may be linked to non-synonymous polymorphisms within ÃŽË›-adrenergic receptors.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Precision measurements of A1N in the deep inelastic regime

    Get PDF
    We have performed precision measurements of the double-spin virtual-photon asymmetry A1A1 on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer and a longitudinally and transversely polarized 3He target. Our data cover a wide kinematic range 0.277≤x≤0.5480.277≤x≤0.548 at an average Q2Q2 value of 3.078 (GeV/c)2, doubling the available high-precision neutron data in this x range. We have combined our results with world data on proton targets to make a leading-order extraction of the ratio of polarized-to-unpolarized parton distribution functions for up quarks and for down quarks in the same kinematic range. Our data are consistent with a previous observation of anA1n zero crossing near x=0.5x=0.5. We find no evidence of a transition to a positive slope in(Δd+Δd¯)/(d+d¯) up to x=0.548x=0.548

    Inhibitory Control and Information Processing in ADHD: Comparing the Dual Task and Performance Adjustment Hypotheses

    Get PDF
    Inhibition is a key neurocognitive domain in ADHD that is commonly assessed with the stop-signal task. The stop-signal involves both go and stop trials; previous research indicates that response times are reliably slower to go trials during tasks with vs. without intermittent stop trials. However, it is unclear whether this pattern reflects deliberate slowing to maximize inhibitory success (performance adjustment hypothesis) and/or disrupted bottom-up information processing due to increased cognitive demands (dual-task hypothesis). Given the centrality of go responding for estimating children\u27s inhibitory speed, finding that children with ADHD slow differently -or for different reasons- has the potential to inform cognitive and self-regulatory theories of ADHD. The current study used a carefully-controlled experimental design to assess the mechanisms underlying stop signal-related slowing in ADHD. Children ages 8-13 with (n = 81) and without ADHD (n = 63) completed the stop-signal task and a control task that differed only in the presence/absence of stop trials. Using drift-diffusion modeling, Bayesian repeated-measures ANOVAs revealed a pattern consistent with the performance adjustment hypothesis, such that children adopted more cautious response strategies (BF10 = 6221.78; d = 0.38) but did not show changes in processing speed (BF01 = 3.08; d = 0.12) or encoding/motor speed (BF01 = 5.73; d = 0.07) when inhibition demands were introduced. Importantly, the ADHD/Non-ADHD groups showed equivalent effects of intermittent stop trials (BF01 = 4.30-5.56). These findings suggest intact self-regulation/performance monitoring in the context of adapting to increased inhibitory demands in ADHD, which has important implications for the continued isolation of potential mechanisms associated with ADHD symptoms and impairment

    Evolution of a Protein Interaction Domain Family by Tuning Conformational Flexibility

    No full text
    Conformational flexibility allows proteins to adopt multiple functionally important conformations but can also lead to nonfunctional structures. We analyzed the dynamic behavior of the enzyme guanylate kinase as it evolved into the GK protein interaction domain (GK<sub>PID</sub>) to investigate the role of flexibility in the evolution of new protein functions. We found that the ancestral enzyme is very flexible, allowing it to adopt open conformations that can bind nucleotide and closed ones that enable catalysis of phosphotransfer from ATP to GMP. Historical mutations that converted the GK from an enzyme to a protein interaction domain dramatically reduce flexibility, predominantly by inhibiting rotations of the protein backbone that are coupled to the global closing motion. Removing flexibility prevents adoption of conformations that cannot fit the protein partner in the binding site. Our results highlight the importance of mutations that optimize protein conformational flexibility with function during evolution

    Allosteric Activation of the Par‑6 PDZ via a Partial Unfolding Transition

    No full text
    Proteins exist in a delicate balance between the native and unfolded states, where thermodynamic stability may be sacrificed to attain the flexibility required for efficient catalysis, binding, or allosteric control. Partition-defective 6 (Par-6) regulates the Par polarity complex by transmitting a GTPase signal through the Cdc42/Rac interaction binding PSD-95/Dlg/ZO-1 (CRIB-PDZ) module that alters PDZ ligand binding. Allosteric activation of the PDZ is achieved by local rearrangement of the L164 and K165 side chains to stabilize the interdomain CRIB:PDZ interface and reposition a conserved element of the ligand binding pocket. However, microsecond to millisecond dynamics measurements revealed that L164/K165 exchange requires a larger rearrangement than expected. The margin of thermodynamic stability for the PDZ domain is modest (∼3 kcal/mol) and further reduced by transient interactions with the disordered CRIB domain. Measurements of local structural stability revealed that tertiary contacts within the PDZ are disrupted by a partial unfolding transition that enables interconversion of the L/K switch. The unexpected participation of partial PDZ unfolding in the allosteric mechanism of Par-6 suggests that native-state unfolding may be essential for the function of other marginally stable proteins
    corecore