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Abstract

Inhibition is a key neurocognitive domain in ADHD that is commonly assessed with the stop-

signal task. The stop-signal involves both “go” and “stop” trials; previous research indicates that 

response times are reliably slower to “go” trials during tasks with vs. without intermittent “stop” 

trials. However, it is unclear whether this pattern reflects deliberate slowing to maximize 

inhibitory success (performance adjustment hypothesis) and/or disrupted bottom-up information 

processing due to increased cognitive demands (dual-task hypothesis). Given the centrality of “go” 

responding for estimating children’s inhibitory speed, finding that children with ADHD slow 

differently –or for different reasons– has the potential to inform cognitive and self-regulatory 

theories of ADHD. The current study used a carefully-controlled experimental design to assess the 

mechanisms underlying stop signal-related slowing in ADHD. Children ages 8–13 with (n=81) 

and without ADHD (n=63) completed the stop-signal task and a control task that differed only in 

the presence/absence of “stop” trials. Using drift-diffusion modeling, Bayesian repeated-measures 

ANOVAs revealed a pattern consistent with the performance adjustment hypothesis, such that 

children adopted more cautious response strategies (BF10=6,221.78; d=0.38) but did not show 

changes in processing speed (BF01=3.08; d=0.12) or encoding/motor speed (BF01=5.73; d=0.07) 

when inhibition demands were introduced. Importantly, the ADHD/Non-ADHD groups showed 

equivalent effects of intermittent “stop” trials (BF01=5.30–5.71). These findings suggest intact 

self-regulation/performance monitoring in the context of adapting to increased inhibitory demands 

in ADHD, which has important implications for the continued isolation of potential mechanisms 

associated with ADHD symptoms and impairment.
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Attention-deficit/hyperactivity disorder (ADHD) is associated with deficits on tasks intended 

to assess numerous neurocognitive domains (Willcutt et al., 2005). Inhibitory control has 

long been considered a central neurocognitive process in ADHD, with ADHD groups 

typically showing medium-sized impairments relative to their typically-developing peers on 

common inhibition paradigms (Alderson, Rapport, & Kofler, 2007; Lijffijt, Kenemans, 

Verbaten, & van Engeland, 2005; Lipszyc & Schachar, 2010; Wright, Lipszyc, Dupuis, 

Thayapararajah, & Schachar, 2014). Though only a subset of children with ADHD may 

exhibit inhibitory control deficits (Fair, Bathula, Nikolas, & Nigg, 2012; Kofler et al., 2018; 

Nigg, Willcutt, Doyle, & Sonuga-Barke, 2005), behavioral inhibition remains key to 

etiologic theories of ADHD (Barkley, 1997; Sonuga-Barke, Bitsakou, & Thompson, 2010), 

and may relate cross-sectionally to clinically-relevant domains of impairment, including 

parent-child relationship quality (Kofler et al., 2017) and social functioning (Bunford et al., 

2015; cf. Tseng & Gau, 2013). Recent evidence also suggests that performance on inhibition 

tasks may predict medication treatment response (see Molitor & Langberg, 2017) and be a 

mediator of stimulant treatment response (Hawk et al., in press), highlighting its continued 

importance for understanding ADHD etiology and treatment.

Inhibitory Control and Response Speed

Inhibitory control refers to a set of interrelated cognitive processes that underlie the ability to 

withhold (action restraint) or stop (action cancellation) an on-going response (Logan, 

Cowan, & Davis, 1984) and are supported by neuroanatomical networks involving bilateral 

frontal, right superior temporal and left inferior occipital gyri, right thalamic, and mid-brain 

structures (Cortese et al., 2012). The stop-signal task (Logan et al., 1984) is arguably the 

most widely-used test of inhibitory control. It requires participants to respond quickly to 

“go” stimuli and to withhold responding when the go stimulus is followed by a “stop” cue 

(typically an auditory tone). Thus, participants have to balance two competing task goals 

(Verbruggen & Logan, 2009). Importantly for the current study, a large body of research 

shows that reaction times (RT) to go trials are reliably slower during tasks that present 

intermittent stop signals than during otherwise identical tasks without these stop trials for 

both children with ADHD (e.g., Alderson et al., 2008) and neurotypical samples (e.g., 

Rieger & Gauggel, 1999; Verbruggen & Logan, 2009).

To date, little attention has been paid to why this slowing occurs and whether the 

mechanisms driving slowing are different for children with and without ADHD. Elucidating 

the processes driving stop-signal-related slowing has the potential to inform cognitive and 

self-regulatory processes in ADHD, with implications for etiological models of ADHD that 

have been developed in part on data from the stop-signal task. It also has methodological 

implications for using the stop-signal task with different diagnostic groups. Perhaps 

counterintuitively, the speed of children’s responses to non-inhibitory go trials is critical for 

estimating the (unobservable) speed of children’s stop processes (Logan et al., 1984), which 
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is used frequently as evidence for inhibition deficits in ADHD (Alderson et al., 2007; 

Lipszyc & Schachar, 2010). If stop-signal-related slowing is induced by different 

mechanisms across diagnostic groups, it would raise significant concerns about the 

interpretation of go responses in the stop signal task, which in turn brings into question the 

validity of the task’s primary outcome variable, Stop Signal Reaction Time1.

Reaction Time Slowing: Dual-task Requirement Hypothesis

There are two primary processes by which RTs to go trials can become slowed when 

intermittent stop signals are present. As explicated by Verbruggen and Logan (2009), 

introducing a stop signal to a choice discrimination task requires individuals to maintain two 

task goals in mind and attend to both auditory and visual information. It is suspected that 

having to maintain two competing task goals (“go” and “stop”) increases working memory 

and divided attention demands (Garon et al., 2008); these increased cognitive demands may 

disrupt efficient bottom-up processing of task stimuli, thereby slowing processing speed and 

responses to go stimuli – what Verbruggen and Logan (2009) refer to as the dual-task 
requirement hypothesis. As argued by Wiemers and Redick (2017; cf. Weigard & Huang-

Pollock, 2017), reduced working memory capacity limits an individual’s ability to maintain 

goal-relevant information in working memory during task completion, which in turn 

produces failures in cognitive control and slowed/variable processing of task stimuli.

Relevant to ADHD, the dual-task requirement hypothesis may be particularly appealing 

given replicated evidence that children with ADHD perform poorly on tasks of working 

memory (Kasper, Alderson, & Hudec, 2012) and tasks requiring attention to dual tasks 

(Hutchinson, Bavin, Efron, & Sciberras, 2012; Hwang, Gau, Hsu, & Wu, 2010), as well as 

evidence for robust associations between working memory abilities and reaction time/

processing speed in ADHD samples (Karalunas & Huang-Pollock, 2013; Kofler et al., 2014; 

Raiker et al., 2018; Weigard & Huang-Pollock, 2017). It therefore seems likely that the 

increased executive control demands evoked by the stop signal would differentially disrupt 

maintenance of competing task goals, resulting in impaired information processing 

efficiency for children with ADHD relative to non-ADHD children.

Reaction Time Slowing: Performance Adjustment Hypothesis

Slowed go RTs in the presence of intermittent stop trials may also be produced by 

intentional slowing to maximize the likelihood of correct inhibition and to maintain high 

accuracy. Evidence supporting this hypothesis includes demonstrations that participants 

become more cautious in their response to go trials after inhibition trials (Schachar et al., 

2004; Verbruggen, Logan, Liefooghe, & Vandierendonck, 2008) and can proactively adjust 

their response style when stop signals are introduced (Verbruggen & Logan, 2009). Thus, 

the performance adjustment hypothesis suggests that participants purposefully slow 

responses to go trials in an attempt to maximize performance on stop trials2. This speed-

1.SSRT is the primary outcome variable in the stop signal task; it is computed as MRT - stop signal delay, which is the average 
duration of time between stimulus onset and stop signal onset.
2.Verbruggen and Logan (2009) refer to this as the proactive adjustment hypothesis, but because the current study was not designed to 
determine whether adjustments are proactive or reactive the more general description is used instead.
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accuracy trade-off would result in slower go RTs due to a more cautious response style when 

a stop signal might occur, rather than due to impaired information processing resulting from 

increased cognitive demands.

Being able to adaptively shift one’s relative emphasis on speed versus accuracy in response 

to changing task demands is critical for successful self-regulation. In ADHD, apparent 

deficits across a variety of cognitive domains may be accounted for in part by deficits in 

basic self-regulatory processes that contribute to poor task performance, regardless of the 

specific domain assessed (Douglas, 1999). Indeed, there is some evidence of ADHD/control 

group differences in key aspects of self-regulation, including post-error slowing (Balogh & 

Czobor, 2016) and performance monitoring (e.g., Albrecht et al., 2008; Groen et al., 2008), 

though not all studies observe these differences (e.g., Groom et al., 2010; Van De Voorde, 

Roeyers, & Wiersema, 2010). In regards to speed-accuracy tradeoffs specifically, it has been 

suggested that children with ADHD have difficulty adjusting their behavior in response to 

changing task instructions relative to their typically-developing peers (Mulder et al., 2010), 

but other work demonstrates that they can modulate their level of response caution as well as 

typically-developing children when reinforcement is introduced for speeded accuracy 

(Fosco, White, & Hawk, 2017).

To summarize, previous research seeking to quantify the nature and extent of ADHD-related 

self-regulation deficits is mixed. However, searching exclusively for diagnostic group 

deficits can limit our understanding of ADHD because identifying processes that remain 

intact in a disorder is also critical for advancing theory and developing targeted interventions 

(i.e., to ensure remediation is not directed at a process that is unimpaired). To date, work in 

this area has been limited by the use of null hypothesis testing, for which a lack of a group 

difference cannot be readily interpreted. The current study advances this area by using 

Bayesian methods that provide evidence both against and for the null hypothesis to improve 

our understanding of both impaired and non-impaired processes in children with ADHD.

Dual-Task versus Performance Adjustment Predictions

Both the dual-task and performance adjustment hypotheses predict slower RTs to go trials 

during tasks with intermittent stop trials. However, they make different predictions regarding 

the processes driving slower RTs, which can be computationally modeled using a diffusion 

model framework (Table 1). The drift diffusion model (DDM) is a well-validated model of 

simple decision making (Ratcliff & McKoon, 2008). It integrates RT and accuracy data to 

decompose task performance into parameters representing processing speed (referred to as 

“drift rate”), degree of response caution (boundary separation), and processes unrelated to 

the decision process, such as time for stimulus encoding and response execution (non-

decision time; Voss, Nagler, & Lerche, 2013).

Within the DDM framework, the dual-task requirements hypothesis posits that the presence 

of stop signals increases working memory and/or divided attention demands, which in turn 

increases the latency of non-decisional processes (e.g., stimulus encoding and response 

execution) and slows the rate of processing speed. Conversely, the performance adjustment 
hypothesis predicts that participants will adopt a more cautious response strategy that 
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involves increasing the quantity of information required to choose between response options, 

reflected by an increase in boundary separation (Verbruggen & Logan, 2009).

In a study examining these hypotheses in a small college student sample (Verbruggen & 

Logan, 2009), results were generally consistent with both hypotheses, albeit with stronger 

support for the hypothesis that slowed go responding during inhibition tasks was driven by 

participants proactively slowing in an effort to enhance accuracy. To our knowledge, no 

study to date has investigated these hypotheses in a clinical child sample, or investigated the 

extent to which intermittent stop trials differentially affect components of information 

processing in children with ADHD relative to their non-ADHD peers. Given the well-

documented developmental findings that children experience weaker controlled attention at 

lower loads compared to adults (e.g., Cowan et al., 2006), we presumed this would translate 

to greater susceptibility to dual task interference in our child sample compared to previous 

adult samples.

Current Study

The current study extends previous work by examining the mechanisms and processes 

underlying the effects of intermittent stop trials on go RTs in the stop signal task among 

children with and without ADHD. Although several ADHD studies have assessed 

information processing within the drift diffusion framework during both stop signal tasks 

(e.g., Huang-Pollock et al., 2017; Karalunas, Huang-Pollock, & Nigg, 2012; Karalunas & 

Huang-Pollock, 2013) and no-tone tasks (Fosco et al., 2017), adequately testing whether 

children with ADHD show differential patterns of dual-task vs. performance adjustment 

effects requires that the same children complete both the stop-signal and an otherwise-

identical no-tone task to evaluate how information processing parameters change when 

inhibitory demands are introduced.

Using a counterbalanced experimental design that included tasks with and without 

intermittent stop signals, we hypothesized that both ADHD and Non-ADHD groups would 

show slowed response times to go trials during the task with intermittent stop trials. As 

argued by Verbruggen & Logan (2009), support for the dual-task requirements hypothesis 
would include significant increases in non-decision time (i.e., slower non-decision time), 

significant decreases in drift rate (i.e., slower processing speed), and no change in boundary 

separation during the stop-signal relative to control task (Table 1). In contrast, support for 

the performance adjustment hypothesis would include significant increases in boundary 

separation and no changes in drift rate or non-decision time during the stop-signal relative to 

the control task (i.e., a more cautious response style but stable processing speed).

Evidence for differential effects of intermittent inhibition demands for children with ADHD 

would include significant group x task interactions for one or more of the drift diffusion 

parameters (response caution, drift rate, non-decision time), interpreted according to the 

performance adjustment and dual-task hypotheses outlined above. Given the replicated 

evidence that children with ADHD exhibit impairments on dual-task working memory tasks 

(e.g., Alderson et al., 2017; Willcutt et al., 2005), combined with inconsistent evidence 

regarding the extent to which these children show impaired performance adjustment/
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monitoring (e.g., Groom et al., 2010; Van De Voorde et al., 2010), we predicted that children 

with ADHD would exhibit slower processing speed when intermittent stop signals are 

present, indicating support for the dual-task requirements hypothesis. In contrast, we 

predicted that children without ADHD would show increased emphasis on accuracy over 

speed (higher response caution) but no significant change in information processing speed, 

consistent with previous work that has primarily supported the performance adjustment 
hypothesis in typically-developing samples (Verbruggen & Logan, 2009).

Method

Participants

The sample included 144 children aged 8 to 13 years (M = 9.97, SD = 1.48; 116 boys, 28 

girls) from two sites in the Southern United States. Participants were recruited through 

community resources (e.g., pediatricians, school system personnel, self-referral) to 

participate in a research study at a university-based research laboratory between 2010 and 

2017. All families received no-cost psychoeducational evaluations for study participation. 

All parents and children gave informed consent/assent, and Institutional Review Board 

approval was obtained/maintained. Child race/ethnicity was representative of the recruitment 

regions, and included Caucasian non-Hispanic (81%), mixed racial/ethnic (8%), Native 

American (6%), Hispanic English-speaking (3%), and Asian (2%) backgrounds.

Group Assignment

All children and caregivers completed a comprehensive evaluation, regardless of recruitment 

reason, that included detailed, semi-structured clinical interviewing (K-SADS; Kaufman et 

al., 1997). The K-SADS (2013 Update) allows differential diagnosis according to symptom 

onset, course, duration, quantity, severity, and impairment in children and adolescents based 

on DSM-5 criteria (American Psychiatric Association [APA], 2013). K-SADS interviews 

were supplemented with parent and teacher broadband (Child Behavior Checklist/Teacher 

Report Form or Behavior Assessment System for Children-2; Achenbach & Rescorla, 2001; 

Reynolds & Kamphaus, 2004) and narrowband ADHD rating scales (Conners-3 or Child 

Symptom Inventory-IV; Conners, 2008; Gadow & Sprafkin, 2002). A psychoeducational 

report was provided to parents.

Eighty-one children met all of the following criteria and were included in the ADHD group 

(n=81; 25% girls): (1) DSM-5 diagnosis of ADHD Combined (n=43), Inattentive (n=36), or 

Hyperactive/Impulsive Presentation (n=1) by the directing clinical psychologist based on K-

SADS; and (2) Borderline/clinical elevations on at least one parent and one teacher ADHD 

rating scale; and (3) current impairment based on parent report. All ADHD subtypes/

presentations were eligible given the instability of ADHD subtypes (Lahey, Pelham, Loney, 

Lee, & Willcutt, 2005; Valo & Tannock, 2010). Psychostimulants (Nprescribed=24) were 

withheld >24 hours for testing. To improve generalizability, children with comorbidities 

were included. Clinical consensus best estimate comorbidities included oppositional defiant 

(25%), specific learning (21%), anxiety (10%), and depressive (10%) disorders.
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The Non-ADHD group (n=63; 13% girls) included both neurotypical children and children 

with psychiatric disorders other than ADHD. Neurotypical children (n=34; 54%) had typical 

developmental histories and did not meet criteria for any psychiatric disorder. Elevations on 

parent or teacher ratings were not exclusionary for the neurotypical group if follow-up 

interviewing suggested these elevations were not due to actual ADHD symptoms (e.g., 

developmentally-appropriate parent-child relational problems, recency effects such that 

endorsements did not reflect typical patterns of behavior). Children who met criteria for 

disorders other than ADHD (n=29; 46%) were also included in the Non-ADHD group. 

These Non-ADHD disorders were included to control for comorbidities in the ADHD group, 

and included best estimate diagnoses of oppositional defiant (11%), specific learning (8%), 

anxiety (6%), and depressive (6%) disorders. Importantly, the ADHD and Non-ADHD 

clinical groups did not differ significantly in the proportion of children diagnosed with ODD 

(BF01=0.57) and learning disorders (BF01=1.92), and were statistically equivalent with 

regards to rates of anxiety (BF01=6.36) and depression (BF01=6.36). The Bayes Factor BF01 

is an odds ratio indicating support for the null hypothesis that the groups are equivalent (H0) 

relative to the alternative hypothesis that the groups differ (H1; see Bayesian Analyses 
section below).

Children were excluded for gross neurological, sensory, or motor impairment, history of 

seizure disorder, psychosis, autism spectrum, or intellectual disability, or non-stimulant 

medications that could not be withheld for testing.

Procedures

The experimental tasks were administered as part of a larger battery that involved several 

sessions of approximately 3 hours each. All tasks were counterbalanced to minimize order 

effects. Performance was monitored at all times by the examiner, who was stationed just out 

of the child’s view to provide a structured setting while minimizing performance 

improvements associated with examiner demand characteristics (Gomez & Sanson, 1994). 

All children received brief (2–3 min) breaks after each task, and preset longer (10–15 min) 

breaks after every 2–3 tasks to minimize fatigue.

Socioeconomic Status (SES) and Measured Intelligence (IQ)

Hollingshead (1975) SES was estimated based on caregiver(s)’ education and occupation. 

IQ was estimated using the Wechsler Intelligence Scales for Children, Fourth or Fifth 

Edition or Wechsler Abbreviated Scales of Intelligence, Second Edition (Wechsler, 2014).

Tasks

Stop-signal.—Task and administration instructions were identical to Alderson and 

colleagues (2008). Psychometric evidence includes high internal consistency, 3-week test-

retest reliability (both=.72), and convergent validity with other inhibition tests (Soreni, 

Crosbie, Ickowicz, & Schachar, 2009). Internal consistency of MRT across the four blocks 

in the current sample was α=.89.

Go-stimuli were displayed for 1000-ms as uppercase letters X and O positioned in the center 

of a computer screen (500-ms interstimulus interval; total trial duration=1500-ms). Xs and 
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Os appeared with equal frequency. A 1000-Hz auditory tone (stop-stimulus) was presented 

randomly on 25% of trials. Stop-signal delay – the latency between go- and stop-stimuli 

presentation – was initially set at 250-ms, and dynamically adjusted ±50-ms contingent on 

performance. The algorithm was designed to approximate successful inhibition on 50% of 

stop-trials. In the current study, inhibition success was 49.7%, 50.8%, 49.7%, and 50.8% 

across the four experimental blocks. Children completed two practice and four consecutive 

experimental blocks of 32 trials/block (8 stop-trials per block). Stop-signal performance data 

were reported for a subset of the current sample to examine conceptually unrelated 

hypotheses (Alderson et al., 2017; Kofler et al., 2017)

No-tone choice reaction time task.—The choice reaction time task is identical to the 

stop signal task in every aspect except for the primary independent variable: All trials are go 

trials, as opposed to the stop-signal task where 25% of trials are stop trials. Administration 

instructions are identical to the No-Tone condition described by Alderson et al. (2008). All 

participants completed two practice blocks and four consecutive experimental blocks of 32 

trials (total of 128 experimental trials). The experimental blocks required approximately 7.5 

minutes to complete. Participants whose counterbalancing resulted in them completing the 

no-tone task after the stop-signal task were explicitly told to respond to all trials. Internal 

consistency for the no-tone MRT across the four blocks was high (α=.91).

Drift Diffusion Modeling

The drift diffusion model is a well-validated stochastic accumulator model of choice 

decision tasks (Ratcliff & McKoon, 2008; Voss et al., 2013). It assumes that information 

accumulates continuously until there is sufficient evidence to make a decision. According to 

the diffusion model, a binary decision is represented by an upper and lower boundary 

reflecting the two response options. The decision process begins between the two response 

boundaries, and information is accumulated from the stimulus; each sample of information 

shifts the process towards one boundary or the other. A decision is made once the 

accumulated information reaches a boundary, at which point the response execution process 

begins.

Relevant to the current investigation, drift rate (v) refers to the speed of information 

accumulation; larger drift rate values indicate faster information accumulation. Boundary 

separation (a) refers to the quantity of information considered before a decision is executed 

and reflects one’s degree of response caution; higher boundary separation requires more 

information to be accumulated about the stimulus before a decision is made, and thus results 

in a higher chance of accuracy, albeit with a slower response (i.e., speed-accuracy trade-off). 

Lower boundary separation results in a faster response at the cost of reduced accuracy. Non-

decision time (t0) captures aspects of reaction time performance unrelated to decision 

making, including stimulus encoding and skeletomotor response speed; higher non-decision 

time reflects slower encoding and/or motor speed, which are not separable in the diffusion 

model. Data were screened for anticipatory responses (RTs < 150 ms). The Kolmogorov-

Smirnov (K-S) algorithm was implemented using fast-dm software v. 30.2 (Voss & Voss, 

2007) given its robustness to outliers, use of individual trial data to derive diffusion 

parameters, and evidence that it can provide excellent parameter recovery with as few as 20 
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trials per participant (Voss & Voss, 2007). Drift rate, boundary separation, and non-decision 

time were estimated separately for the No-Tone and Stop-Signal tasks for each child. Model 

fit was acceptable for all participants for each task, all ps> .05.

Previous work utilizing diffusion modeling to examine go trial performance during 

inhibition tasks suggests that children with ADHD exhibit slower drift rate in most 

(Karalunas et al., 2012; Karalunas & Huang-Pollock, 2013) but not all studies (Huang-

Pollock et al., 2017). Group differences in non-decision time have been inconsistent, with 

reports of equivalent (Karalunas et al., 2012) or faster non-decision time for children with 

ADHD (Karalunas & Huang-Pollock, 2013). Boundary separation is consistently similar 

across diagnostic groups (Karalunas et al., 2012; Karalunas & Huang-Pollock, 2013). On a 

no-tone choice discrimination task, children with ADHD demonstrated slower drift rate but 

equivalent boundary separation and non-decision time (Fosco et al., 2017).

Bayesian Analyses

The benefits of Bayesian methods over null hypothesis significance testing (NHST) are well 

documented (Rouder & Morey, 2012; Wagenmakers et al., 2016) and were selected because 

they allow stronger conclusions by estimating the magnitude of support for both the 

alternative and null hypotheses simultaneously (Rouder & Morey, 2012). Bayes factor mixed 

ANOVAs with default prior scales (Rouder & Morey, 2012; Wagenmakers et al., 2016) were 

conducted using JASP 0.8.3 (JASP Team, 2017). Instead of a p-value, these analyses provide 

BF10, which is the Bayes Factor of the alternative hypothesis (H1) against the null 

hypothesis (H0). BF10 is an odds ratio, where values above 3.0 are considered moderate 

evidence supporting the alternative hypothesis (i.e., statistically significant evidence for the 

alternative hypothesis). BF10 values above 10.0 are considered strong (>30 = very strong, 

>100 = decisive/extreme support; Wagenmakers et al., 2016).

Conversely, BF01 is the Bayes Factor of the null hypothesis (H0) against the alternative 

hypothesis (H1). BF01 is the inverse of BF10 (i.e., BF01 = 1/BF10), and is reported when the 

evidence indicates a lack of an effect (i.e., favors the null hypothesis; Rouder & Morey, 

2012). BF01 values are interpreted identically to BF10 (>3.0 = moderate, >10.0 = strong, 

>100 = decisive/extreme support for the null hypothesis that a predictor is not associated 

with an outcome; Rouder & Morey, 2012).

Thus, finding BF10 = 10.0 would indicate that the observed data are 10 times more likely 

under the alternative hypothesis model (e.g., strong evidence for deficits in the ADHD vs. 

Non-ADHD group), whereas BF01 = 10 would indicate that the observed data are 10 times 

more likely under the null hypothesis model (e.g., strong evidence that the ADHD and Non-

ADHD groups are equivalent). Comparisons are supplemented with Cohen’s d effect sizes.

Data Analysis Overview

Dependent variables were first examined for outliers, and outliers were winsorized to 3 SDs 

of the group distribution (ADHD group: 1.5% of data points; Non-ADHD group: 1.2% of 

data points). The analytic plan was executed in three tiers. Tiers 1 and 2 included 2 Group 

(ADHD vs. Non-ADHD) x 2 Task (no-tone vs. stop signal) mixed ANOVAs. We first 

conducted comparisons of MRT to replicate previous findings indicating that go-trial 
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estimates of response speed are slower during tasks with intermittent stop trials, and to 

determine whether adding these inhibitory demands differentially affects children with vs. 

without ADHD (Tier 1). In the second Tier, we used the Ratcliff (1978) diffusion model to 

test the study’s primary hypotheses and examine potential cognitive mechanisms underlying 

these effects to evaluate support for dual task and performance adjustment predictions. 

Finally, exploratory analyses probed the effect of our decision to include both neurotypical 

and clinical control children in the Non-ADHD group by repeating repeated Tier 1 and 2 

analyses with the Non-ADHD group separated into Neurotypical and Clinical Control 

subsamples (3 Group: ADHD vs. Non-ADHD clinical vs. neurotypical x 2 Task: no-tone vs. 

stop signal).

Results

Bayesian Power Analysis

A series of simulation studies were conducted to estimate power for between-group tests 

using the R BayesFactor package and BayesianPowerTtest script (Lakens, 2016) optimized 

by Zimmerman (2016), with parameters as follows (N=144; r-scale=1; k=100,000 simulated 

experiments; BF threshold=3.0). Results indicated power=.89 for supporting the alternative 

hypothesis of impaired information processing in ADHD based on a true effect of d=0.63 

(meta-analytic estimates for ADHD/Non-ADHD drift rate differences range from 0.63 to 

0.75 in Karalunas, Geurts, Konrad, Bender & Nigg, 2014 and Huang-Pollock, Karalunas, 

Tam, & Moore, 2012, respectively; 89% of simulations correctly supported H1 at BF10 > 

3.0, 10% provided equivocal support at BF10 values between 1/3 and 3, and less than 1% 

incorrectly supported H0). Similarly, results indicate that our Type 1 error probability is 1%. 

That is, we have a 1% chance of falsely supporting the alternative hypothesis if the null 

hypothesis is true (i.e., for d=0.0; 84% of simulations supported H0, 15% provided equivocal 

support, and only 1% incorrectly supported H1). Taken together, the Bayesian power 

analyses indicate very low likelihood of drawing false conclusions, with a Type 1 false 

positive likelihood of 1% and a Type 2 false negative likelihood of 1%.

Of note, these Bayesian power estimates are for single variable comparisons (i.e., 

independent samples t-tests). To our knowledge, Bayesian power analysis for mixed-model 

ANOVA is not yet available. Power analysis based on traditional NHST, with α=.05, 

power=.80, 2 groups (ADHD, Non-ADHD), and 2 measurements (No-Tone, Stop-Signal 

tasks) indicates that our N=144 can reliably detect between-group effects of d=0.40, within-

group effects of d=0.22, and group x condition interaction effects of d=0.23 or larger. Thus, 

the study is sufficiently powered to address its primary aims.

Preliminary Analyses

Means and SDs for each outcome variable are shown in Table 2. Parent and teacher ADHD 

ratings were significantly elevated for the ADHD group relative to the Non-ADHD group as 

expected (all BF10 > 172.00; Table 2). The groups showed statistically equivalent age (BF01 

= 5.48) and IQ (BF01 = 4.15), and did not differ significantly in gender composition (BF01 = 

1.25) or SES (BF01 = 2.68).
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Examination of the proportion of successful inhibitions on the stop-signal task indicated that 

the task functioned as expected, and that the ADHD (49.4%) and Non-ADHD (50.8%) 

groups were equivalent in the proportion of successful inhibitions (between-group 

comparison: BF01 = 4.69; one-sample test compared to expected 50% successful inhibitions: 

BF01 = 10.70)3.

Tier 1: Impact of Inhibition Demands on Overall Response Speed

Response speed (MRT).—Replicating previous research, a main effect of task was 

observed (BF10 = 8.27 × 1012; d = 0.76), such that children responded more slowly during 

the stop-signal than the no-tone task, as expected. The ADHD and Non-ADHD groups were 

equivalent in terms of response speed (BF01 = 3.43; d = 0.17). Relative to the main effects 

model, there was inconclusive evidence for a group x task interaction (BF10 = 1.94), 

suggesting no significant evidence that the introduction of the stop signal differentially 

slowed MRT for children with and without ADHD.

Tier 2: Cognitive Mechanisms Underlying Effects of Inhibition Demands on Response 
Speed

Boundary separation (a).—As shown in Figure 1, boundary separation was significantly 

higher during the stop-signal relative to no-tone task (BF10 = 6,221.78; d = 0.38). There was 

moderate evidence that groups were equivalent in boundary separation (BF01 = 3.26; d = 

0.22), and that introducing intermittent stop trials affected the ADHD and Non-ADHD 

groups equivalently (group x task interaction: BF01 = 5.56). This pattern was consistent with 

the performance adjustment hypothesis that children adopt a strategy characterized by 

deliberately slowing their response speeds and considering greater quantities of information 

before making a decision to respond. It was inconsistent, however, with our expectation that 

MRT-related slowing would be driven by increases in response caution for the control group 

but not the ADHD group.

Drift rate (v).—Contrary to hypotheses, drift rate was equivalent across the stop-signal and 

no-tone tasks (BF01 = 3.08; d = 0.12), and the ADHD/Non-ADHD groups showed 

equivalent changes in drift rate when inhibition demands were added (group x task 

interaction: BF01 = 4.38). There was also insufficient evidence to support a main effect of 

group (BF10 = 1.49; d = 0.36). The lack of a main effect of task was consistent with 

performance adjustment hypothesis predictions, but inconsistent with the dual-task 

requirement hypothesis that the increased top-down cognitive control associated with the 

presence of intermittent “stop” trials would significantly affect bottom-up information 

processing speed. It was also inconsistent with the hypothesis that increased dual-task 

demands introduced by the stop signal would differentially disrupt information processing 

speed in ADHD as a function of their top-down impairments in cognitive control.

Non-decision time (t0).—There was moderate evidence that non-decision time was 

equivalent during the stop-signal and no-tone tasks (BF01 = 5.73; d = 0.07). There was also 

3.Additional analyses were conducted excluding individual participants whose percent inhibition was outside 25%-75% (n=13). The 
pattern of results did not differ, so all participants are retained in analyses.
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significant evidence against a main effect of group on non-decision time (BF01 = 5.43; d = 

0.01), and against the group x task interaction (BF01 = 4.30). The lack of a main effect of 

task was consistent with performance adjustment hypothesis predictions, but inconsistent 

with the dual-task requirement hypothesis that the increased top-down cognitive control 

associated with the presence of intermittent “stop” trials significantly disrupts efficient 

stimulus encoding and response execution processes.

Tier 3: Exploratory Analyses

Exploratory results separating the Non-ADHD group into neurotypical and clinical control 

subgroups were highly consistent with the confirmatory analyses reported above. That is, the 

3 Group (ADHD, Clinical Control, Neurotypical) x 2 Task (No-Tone, Stop-Signal) Bayesian 

mixed ANOVAs indicated significant evidence against main effects of group for MRT (BF01 

= 4.85), boundary separation (BF01 = 6.25), and non-decision time (BF01 = 7.68), with 

inconclusive evidence for an effect of group on drift rate (BF10 = 1.70). Importantly, there 

was also significant evidence against a group x task interaction for boundary separation 

(BF01 = 7.98), drift rate (BF01 = 8.81), and non-decision time (BF01 = 11.35); there was no 

significant evidence of a group x task interaction for MRT (BF10 = 1.26). Combined with the 

evidence for task effects on boundary separation (BF10 = 6,221.78), and evidence against 
task effects on drift rate (BF01 = 3.08) and non-decision time (BF01 = 5.73), these results 

indicate that the ADHD, clinical control, and neurotypical groups equivalently engaged in a 

slowing strategy consistent with the performance adjustment hypothesis.

Discussion

Tasks intended to measure inhibitory control are ubiquitously used to understand ADHD-

related cognitive functioning. It is well-documented that increasing a task’s inhibitory 

demands reliably slows reaction time for individuals with (e.g., Alderson et al., 2008) and 

without ADHD (e.g., Verbruggen & Logan, 2009), but little is known about the cognitive 

processes underlying these slowed responses. More importantly, no study has previously 

investigated whether the cognitive processes driving these slower responses differ for 

children with versus children without ADHD, despite the centrality of “go” responding for 

estimating children’s inhibitory speed. We assessed the extent to which children with ADHD 

demonstrate slower RTs during tasks with higher inhibition demands due to disruptions in 

bottom-up information processing efficiency as a function of increased inhibitory, working 

memory, and divided attention demands (dual-task requirement hypothesis) or due to the 

adoption of a more deliberate, cautious response strategy (performance adjustment 
hypothesis).

Effects of Intermittent Inhibition Demands on Response Speed

Replicating previous research (Alderson et al., 2008; Verbruggen & Logan, 2009), we found 

that both children with and without ADHD slowed their overall reaction times (MRT) when 

intermittent stop signals were introduced. Decomposing reaction times into distinct 

information processing components revealed that this slowing was driven by an increase in 

boundary separation, with children adopting a more cautious response strategy and 

considering greater quantities of information before making a decision to respond. Contrary 
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to expectations, the presence of intermittent stop trials did not significantly change the rate 

of information accumulation during go trials (drift rate) or the speed of encoding/response 

execution (non-decision time) for any group. This pattern of findings uniformly supports the 

performance adjustment hypothesis and is inconsistent with the dual-task requirements 
hypothesis (see Table 1; Verbruggen & Logan, 2009). Furthermore, although we expected a 

differential impact of increasing inhibitory demands on information processing components 

across groups, both children with and without ADHD increased their level of response 

caution to an equivalent degree. This study provides evidence that children with ADHD 

engage in similar cognitive strategies as children without ADHD when adapting to the 

increased executive control demands evoked by the stop signal. Moreover, exploratory 

analyses revealed that this pattern held even when separating the non-ADHD group into 

clinical control and neurotypical groups. Taken together, results indicate that children’s 

slowing during inhibition tasks is a deliberate strategy, rather than an outcome of disrupted 

top-down cognitive control. Future work is needed to determine whether the performance 

adjustments identified herein are proactive or reactive (Verbruggen & Logan, 2009), whether 

top-down processes are differentially involved in proactive vs. reactive performance 

adjustments (Wiemers & Redick, 2018), and whether children with and without ADHD 

differ in the form of performance adjustments despite equivalent overall speed-accuracy 

trade-off changes (Shiels & Hawk, 2010).

Information Processing in ADHD: Practical Implications

Reaction time is the primary dependent variable for many cognitive tasks, and it is relatively 

common for researchers to utilize response times to “go” trials during inhibition tasks as 

indicators of processing speed (see Kofler et al., 2013). This practice likely leads to inflated 

response speed estimates for both children with and without ADHD, which is not a 

significant concern for examining diagnostic group differences. It may, however, create 

noise when attempting to aggregate or compare MRT data across studies that differ in the 

presence vs. absence of inhibitory demands.

More problematic is that MRT obscures meaningful information about cognitive 

performance, and continued reliance on MRT will hinder our ability to refine theory and 

inform treatment (see Huang-Pollock et al., 2017 for further discussion of this issue). To 

illustrate, if MRT was the primary outcome variable in the current study, we would likely 

have concluded that introducing stop signals slows processing speed, as MRT is often 

described as reflecting speed of processing. Yet, we found evidence against this 

interpretation when RTs were decomposed into drift diffusion parameters because drift rate 

was equivalent across the no-tone and stop-tone tasks. We therefore urge researchers to 

exercise caution when interpreting standard performance metrics, such as RT and error rates, 

and to utilize metrics that have clearer cognitive interpretations whenever possible.

Information processing in ADHD: Theoretical implications

Self-regulation.—Self-regulation is the process by which individuals dynamically 

modulate their internal states and behavior to adaptively respond to changes in their internal 

and external environment (Nigg, 2017). Although difficulty regulating attention and 

behavior is a core feature of all behavioral symptoms of ADHD, previous research has not 
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consistently demonstrated that basic self-regulatory processes, including performance 

monitoring and post-error slowing, are impacted in ADHD (Shiels & Hawk, 2010). Other 

experimental work has been mixed regarding whether response caution adjustments across 

diagnostic groups are similar (Fosco et al., 2017) or different (Mulder et al., 2010). A 

complicating factor in synthesizing previous research is that absence of evidence does not 

provide evidence of absence. That is, the lack of a diagnostic group difference when using a 

frequentist statistical approach is difficult to interpret. The Bayesian approach utilized in the 

current study is advantageous in this regard because it estimates the degree of support for the 

null over the alternative hypothesis, thus providing evidence for the absence of an effect (see 

e.g., Wagenmakers, Verhagen, & Ly, 2016). The present study provided significant evidence 

that children with ADHD were able to adjust their degree of response caution just as well as 

their non-ADHD peers. This evidence of equivalence across groups, coupled with the 

inconsistencies of previous findings, suggests relatively intact regulation of speed-accuracy 

tradeoffs in response to changing task demands in ADHD. When considered along with 

research in other domains of task-related self-regulation, it is clear that children with ADHD 

do not exhibit obvious problems with basic components of self-regulation. Rather, self-

regulatory difficulties are likely dependent on task demands, such as difficulty level, task 

type, presence of feedback, etc. (Patros, Alderson, Lea, & Tarle, 2017; Shiels & Hawk, 

2010).

Cognition.—Recent evidence suggests that reduced working memory abilities may be a 

causal pathway to ADHD (Coghill et al., 2013; Kofler et al., 2018; Nigg et al., in press) and 

that reduced working memory capacity results in impaired bottom-up information 

processing speed due to difficulties maintaining consistent top-down control (Weimers & 

Redick, 2018; cf. Weigard & Huang-Pollock, 2017). The current study found no evidence 

consistent with that pattern, as processing speed (drift rate) was equivalent across the no-

tone and stop-signal conditions. Differences in findings could indicate that placing high 

demands on working memory specifically (as opposed to other cognitive processes such as 

inhibitory control as manipulated in the current study) drives disruptions in bottom-up 

processing speed and consistency of reaction times (Kofler et al., 2014; Weimers & Redick, 

2018). Although intermittent stop signals do increase working memory demands by 

requiring the maintenance of two competing task goals in mind, it may not produce a degree 

of difficulty comparable to the working memory manipulations used in previous studies. 

That is, if bottom-up processing speed is impacted by high working memory demands, then 

the introduction of the stop signal may have been too weak of a manipulation to produce 

impairment. Neuroimaging work supports this hypothesis, as working memory tasks tend to 

activate higher-order circuitry in the prefrontal cortex (Nee et al., 2013) that is not evoked 

during inhibition paradigms (Cortese et al., 2012; Luijten et al., 2014). Alternatively, the 

impact of top-down control on bottom-up processing may not be unique to working memory 

and could be engendered by numerous cognitive processes. It is possible that the stop signal, 

as typically utilized, is not a strong enough inhibition manipulation to impair top-down 

control and downstream impairments in information processing speed.

Testing these competing hypotheses in future work will inform the ongoing debate regarding 

whether children with ADHD exhibit broad deficits across numerous cognitive domains, or 
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whether these deficits are accounted for by a smaller number of cognitive impairments that 

result in worse performance across tasks intended to measure a wide variety of cognitive 

functions (Coghill, Seth, & Matthews, 2014; Kofler et al., 2018). Of course, it would be 

impossible to design an experimental manipulation that isolates one cognitive process 

(Friedman & Miyake, 2004). As a starting point, one could manipulate the degree of 

inhibitory demands or manipulate various working memory demands during a standard stop 

signal task (Alderson et al., 2017). Conducting a series of carefully-controlled experiments 

that place relatively higher demands on certain processes over others will inform whether 

impaired performance is primarily driven by demands on specific cognitive processes or by 

more generalized increases in any cognitive demand (Snyder, Miyake, & Hankin, 2005). It 

may also be useful to test these hypotheses among children in even younger age groups 

when some neurocognitive functions show more unitary relations rather than functional 

specificity (Garon et al., 2008), and may relate to ADHD symptom severity differently 

(Brocki, Nyberg, Thorell, & Bohlin 2007).

Limitations

The current study was the first to test different hypotheses to explain changes in information 

processing induced by adding inhibitory control demands in a relatively large sample of 

children with and without ADHD. Yet, several caveats must be considered when interpreting 

results. The present study manipulated top-down cognitive control demands and examined 

effects on bottom-up information processing but was unable to test for effects of bottom-up 

information processing on top-down cognitive control. Studies investigating reciprocal 

influences among top-down and bottom-up processes will be critical for establishing a 

taxomony of neurocognitive impairments in ADHD, particularly given recent evidence that 

inducing slower information accumulation may result in reduced working memory task 

performance (Weigard & Huang-Pollock, 2017). This study was also unable to tease apart 

the extent to which findings were driven by increases in inhibitory demands, working 

memory demands, divided attention demands, or a combination of all three.

Although not the primary focus of the current study, we were somewhat surprised to find 

that groups did not differ in stop signal reaction time (SSRT), which is often, but not always, 

observed in the ADHD literature. Though speculative, the groups’ equivalent SSRT is likely 

due to their equivalent MRT, given evidence that ADHD – control group differences in 

SSRT appear to be driven primarily by group differences in MRT (Alderson et al., 2007; 

Lijffijt et al., 2005), and that group differences in MRT are driven primarily by a subset of 

abnormally slow responses in the tail of the reaction time distribution (Kofler et al., 2013). 

The stop signal task utilized in the present study had a short response window (1000 ms), 

which may preclude abnormally slow reaction times that might create diagnostic group 

differences in MRT (and SSRT subsequently). This interpretation is aligned with simulation 

work demonstrating that differentially skewed go responses produce ‘fictitious’ inhibitory 

differences in ADHD (Verbruggen, Chambers, & Logan, 2013). Similarly, we did not 

observe diagnostic group differences in drift rate, which may also be due to the response 

length, as diagnostic group differences in drift rate are greater during slow event rate than 

fast event rate conditions (Huang-Pollock et al., 2017).
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The current findings must be understood within the context of the sample. In any study, 

decisions regarding whether to recruit a clinical control or healthy control group result in 

trade-offs between internal validity (and the strength of conclusions that can be drawn about 

a particular diagnostic group) and generalizability. The current study attempted to balance 

these considerations by including both a clinical and healthy control group. The ADHD and 

clinical control groups were matched for the number of non-ADHD disorders because 

neither cognitive dysfunction nor behavioral symptoms (e.g., difficulty concentrating, 

restlessness) appear unique to ADHD (e.g., Snyder, 2013; Youngstrom, Arnold, & Frazier, 

2010), and emerging evidence suggests that some (formally) putative pathways to the 

ADHD phenotype may be linked with common comorbidities rather than ADHD itself 

(Tenenbaum et al., 2018). Though inclusion of non-ADHD disorders could potentially have 

obscured diagnostic group differences, exploratory analyses revealed that the pattern of 

results is unchanged when the control groups are examined separately.

It is also possible that our sampling methods impacted observed results. Although all 

children were recruited from the community specifically for research purposes, parental 

motivation for participation was likely different across participants, which may have 

introduced sampling bias (Wacholder, Silverman, McLaughlin, & Mandel, 1992). For 

example, some families were likely motivated by the no-cost psychoeducational evaluation 

provided to all participants, either because they suspected a behavioral/affective/academic 

disorder or because they wanted data on their child’s intellectual and academic functioning, 

whereas other families expressed a desire to contribute to research and/or felt that it would 

be a valuable experience for their child. While the sample more generally represents a 

community-based rather than hospital/clinical-based sample, replications using explicit 

community-based recruitment procedures would be helpful to maximize generalizability.

Conclusions

Understanding the nature and severity of ADHD-related cognitive deficits has the potential 

to refine theoretical models of ADHD etiology (Coghill, Nigg, Rothenberger, Sonuga-Barke, 

& Tannock, 2005) and improve diagnosis (Rapport, Chung, Shore, Denney, & Isaacs, 2000) 

and treatment (Chacko Kofler, & Jarrett, 2014; Molitor & Langberg, 2017). The current 

study found that children with ADHD slowed their response times during the stop-signal 

task due to an intentional cognitive control strategy, rather than as a byproduct of disruptions 

in top-down cognitive control. Moreover, this pattern was equivalent for children with and 

without ADHD. Despite difficulties in some aspects of performance monitoring and 

cognitive control (Shiels & Hawk, 2010), children with ADHD appear capable of flexibly 

adjusting their approach to tasks with different demands by modulating levels of response 

caution. Given increasing interest in targeting basic processes that are implicated in ADHD 

(e.g., Cortese et al., 2015), identifying processes that are intact in the disorder is critical, as it 

constrains the scope of potential interventions.

Of course, these results demonstrate group-level patterns, and ADHD is a dimensional and 

heterogeneous disorder (Fair et al., 2012; Marcus & Barry, 2011). Next steps include 

exploring variation in response to experimental manipulations to understand the extent of 

this heterogeneity, as well as the processes that may account for this heterogeneity. 
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Replications with a range of clinical and non-clinical groups, more ecologically-valid 

outcomes, and different types/modalities of information to be processed are also necessary 

to inform theory and to better understand the contexts under which these acute experimental 

findings inform real-world functioning.
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Figure 1. Impact of intermittent stop signals and diagnostic group on drift diffusion parameters
(a) Higher boundary separation reflects greater response caution, (b) higher values of drift 

rate reflect faster processing speed, and (c) lower values of non-decision time reflect faster 

stimulus encoding / motor response execution. Error bars are Bayesian 95% credible 

intervals.
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Table 1.

Main effects of task manipulation (no-tone, stop-signal) predicted by the dual-task requirements and 

performance adjustment hypotheses (Verbruggen & Logan, 2009).

Dual-Task Requirements Hypothesis Performance Adjustment Hypothesis Results (Main Effects of Task)

Mean RT Slower Slower Slower (BF10 = 8.27 × 1012)

Drift rate Lower No change No change (BF01 = 3.08)

Boundary separation No change Greater Greater (BF10 = 6,221.78)

Non-decision time Slower No change No change (BF01 = 5.73)

Note: Bolded cells indicate model predictions that were supported in the current study. BF10 is the Bayes Factor of the alternative hypothesis (H1) 

against the null hypothesis (H0). Conversely, BF01 is the Bayes Factor of the null hypothesis (H0) against the alternative hypothesis (H1), and is 

reported when the evidence indicates a lack of an effect. BF: >3.0 = moderate support, >10.0 = strong support, >100 = decisive/extreme support.
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Table 2.

Sample and demographic variables

Variable ADHD (n=81) Non-ADHD (n=63) BF10

M SD Min - Max M SD Min ‒ Max

Sex (Girls/Boys) 20/61 8/55 1.02

Age 9.99 1.54 8.09 ‒ 13.36 9.95 1.40 8.28 ‒ 12.75 0.18

Hollingshead SES 47.48 10.19 22.0 ‒ 66.0 49.80 11.68 22.0 ‒ 66.0 0.35

Wechsler IQ (Standard Score) 103.37 12.61 77.0 ‒ 140.0 105.21 15.24 74.0 ‒ 142.0 0.20

Attention Problems (T-score)

 Parent 72.21 9.78 52.0 ‒ 91.0 56.19 13.01 35.0 ‒ 90.0 9.86 × 109

 Teacher 67.54 10.54 38.0 ‒ 90.0 51.35 9.77 38.0 ‒ 85.0 2.81 × 1012

Hyperactivity (T-score)

 Parent 70.31 14.49 37.0 ‒ 93.0 54.94 12.22 38.0 ‒ 85.0 4.24 × 106

 Teacher 62.69 15.52 40.0 ‒ 91.0 53.27 14.41 40.0 ‒ 90.0 34.07

Choice Reaction Task (No-Tone)

  MRT 558.16 86.88 353.28 ‒ 779.89 532.55 66.78 395.03 ‒ 714.58 1.16

  SDRT 143.76 36.23 52.33 ‒ 229.91 126.07 30.76 58.87 ‒ 189.78 3.94

  Accuracy 0.88 0.09 0.57 ‒ 1.00 0.90 0.07 0.61 ‒ 1.00 0.63

  Boundary Separation (a) 1.23 0.24 0.71 ‒ 1.80 1.39 0.63 0.81 ‒ 3.14 1.05

  Drift Rate (v) 2.00 1.08 0.50 ‒ 4.93 2.43 1.30 0.38 ‒ 5.87 0.93

  Non-decision Time (t0) 0.32 0.09 0.08 ‒ 0.51 0.31 0.07 0.09 ‒ 0.49 0.21

Stop-Signal Task

  MRT 601.88 74.53 397.47 ‒ 748.41 604.70 70.97 382.59 ‒ 778.48 0.18

  SDRT 152.79 30.30 84.84 ‒ 225.56 137.81 26.21 90.76 ‒ 204.15 6.92

  Accuracy 0.89 0.09 0.67 ‒ 1.00 0.93 0.06 0.74 ‒ 1.00 9.39

  Boundary Separation (a) 1.83 1.40 0.81 ‒ 5.82 2.43 1.80 0.77 ‒ 7.22 0.22

  Drift Rate (v) 2.20 1.29 0.56 ‒ 5.64 2.53 1.39 0.82 ‒ 6.23 0.36

  Non-decision Time (t0) 0.32 0.13 0.002 ‒ 0.58 0.32 0.13 0.001 ‒ 0.58 0.18

  Stop-signal Delay (SSD) 248.51 62.29 93.75 ‒ 368.75 256.25 65.26 93.75 ‒ 371.88 0.21

  Stop Signal Reaction Time 351.24 69.99 191.21 ‒ 575.14 348.45 63.94 227.70 ‒ 501.90 0.20

Note. BF = Bayes Factor; IQ = Intelligence Quotient (standard score); MRT = mean reaction time (milliseconds); SDRT = standard deviation of 
reaction time (milliseconds); SES = socioeconomic status; Stop Signal Reaction Time (MRT – SSD) and SSD are included to characterize the 
sample. Min – Max are the minimum and maximum values. BF10 : >3.0 = moderate support, >10.0 = strong support, >100 = decisive/extreme 

support
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