65 research outputs found

    Structure generation by irradiation: What can glimpse teach us about the ISM structure?

    Get PDF
    Diffuse emission in the mid-infrared shows a wealth of structure, which lends itself to high-resolution structure analysis of the interstellar gas. A large part of the emission comes from polycyclic aromatic hydrocarbons (PAHs), excited by nearby ultraviolet sources. Can the observed diffuse emission structure be interpreted as column density structure? We discuss this question with the help of a set of model molecular clouds bathed in the radiation field of a nearby O star. The correlation strength between column density and "observed" flux density strongly depends on the absolute volume density range in the region. Shadowing and irradiation effects may completely alter the appearance of an object. Irradiation introduces additional small-scale structure, and it can generate structures resembling shells around H II regions in objects that do not possess any shell-like structures whatsoever. Nevertheless, with some effort, structural information about the underlying interstellar medium can be retrieved. In the more diffuse regime [n(H I) ≳ 100 cm-3], flux density maps may be used to trace the 3D density structure of the cloud via density gradients. Thus, while caution definitely is in order, mid-infrared surveys such as GLIMPSE will provide quantitative insight into the turbulent structure of the interstellar medium

    A self-consistent model of Galactic stellar and dust infrared emission and the abundance of polycyclic aromatic hydrocarbons

    Full text link
    We present a self-consistent three-dimensional Monte-Carlo radiative transfer model of the stellar and dust emission in the Milky-Way, and have computed synthetic observations of the 3.6 to 100 microns emission in the Galactic mid-plane. In order to compare the model to observations, we use the GLIMPSE, MIPSGAL, and IRAS surveys to construct total emission spectra, as well as longitude and latitude profiles for the emission. The distribution of stars and dust is taken from the SKY model, and the dust emissivities includes an approximation of the emission from polycyclic aromatic hydrocarbons in addition to thermal emission. The model emission is in broad agreement with the observations, but a few modifications are needed to obtain a good fit. Firstly, by adjusting the model to include two major and two minor spiral arms rather than four equal spiral arms, the fit to the longitude profiles for |l|>30 degrees can be improved. Secondly, introducing a deficit in the dust distribution in the inner Galaxy results in a better fit to the shape of the IRAS longitude profiles at 60 and 100 microns. With these modifications, the model fits the observed profiles well, although it systematically under-estimates the 5.8 and 8.0 microns fluxes. One way to resolve this discrepancy is to increase the abundance of PAH molecules by 50% compared to the original model, although we note that changes to the dust distribution or radiation field may provide alternative solutions. Finally, we use the model to quantify which stellar populations contribute the most to the heating of different dust types, and which stellar populations and dust types contribute the most to the emission at different wavelengths.Comment: Published in A&A. This version has been revised (compared to the published version) to include additional references to previous work. Scripts to reproduce the results in this paper can be found as supplementary material on the A&A site, or at https://github.com/hyperion-rt/paper-galaxy-rt-mode

    Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments

    Full text link
    We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n<7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.Comment: 37 pages, 15 figure

    Low-mass pre--main-sequence stars in the Magellanic Clouds

    Full text link
    [Abridged] The stellar Initial Mass Function (IMF) suggests that sub-solar stars form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in star-forming regions. The low-mass stars in such regions are still in their pre--main-sequence (PMS) evolutionary phase. The peculiar nature of these objects and the contamination of their samples by the evolved populations of the Galactic disk impose demanding observational techniques for the detection of complete numbers of PMS stars in the Milky Way. The Magellanic Clouds, the companion galaxies to our own, demonstrate an exceptional star formation activity. The low extinction and stellar field contamination in star-forming regions of these galaxies imply a more efficient detection of low-mass PMS stars than in the Milky Way, but their distance from us make the application of special detection techniques unfeasible. Nonetheless, imaging with the Hubble Space Telescope yield the discovery of solar and sub-solar PMS stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of such objects are identified as the low-mass stellar content of their star-forming regions, changing completely our picture of young stellar systems outside the Milky Way, and extending the extragalactic stellar IMF below the persisting threshold of a few solar masses. This review presents the recent developments in the investigation of PMS stars in the Magellanic Clouds, with special focus on the limitations by single-epoch photometry that can only be circumvented by the detailed study of the observable behavior of these stars in the color-magnitude diagram. The achieved characterization of the low-mass PMS stars in the Magellanic Clouds allowed thus a more comprehensive understanding of the star formation process in our neighboring galaxies.Comment: Review paper, 26 pages (in LaTeX style for Springer journals), 4 figures. Accepted for publication in Space Science Review

    RCW 49 at mid-infrared wavelengths: A glimpse from the Spitzer Space Telescope

    Get PDF
    The luminous, massive star formation region RCW 49, located in the southern Galactic plane, was imaged with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope as part of the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) program. The IRAC bands contain polycyclic aromatic hydrocarbon (PAH) features at 3.3, 6.2, 7.7, and 8.6 μm, as well as the Brα line. These features are the major contributors to the diffuse emission from RCW 49 in the IRAC bands. The Spitzer IRAC images show that the dust in RCW 49 is distributed in a network of fine filaments, pillars, knots, sharply defined boundaries, bubbles, and bow shocks. The regions immediately surrounding the ionizing star cluster and W-R stars are evacuated of dust by stellar winds and radiation. The IRAC images of RCW 49 suggest that the dust in RCW 49 has been sculpted by the winds and radiation from the embedded luminous stars in the inner 5′ (inner ∼6 pc) of the nebula. At projected angular radii φ > 5′ from the central ionizing cluster, the azimuthally averaged infrared intensity falls off as ∼φ-3. Both high-resolution radio and mid-IR images suggest that the nebula is density bounded along its western boundary. The filamentary structure of the dust in RCW 49 suggests that the nebula has a small dust filling factor and, as a consequence, the entire nebula may be slightly density bounded to H-ionizing photons

    Identification of main-sequence stars with mid-infrared excesses using glimpse: β pictoris analogs?

    Get PDF
    Spitzer IRAC 3.6-8 μm photometry obtained as part of the GLIMPSE survey has revealed mid-infrared excesses for 33 field stars with known spectral types in a 1.2 deg2 field centered on the southern Galactic H II region RCW 49. These stars comprise a subset of 184 stars with known spectral classification, most of which were preselected to have unusually red IR colors. We propose that the mid-IR excesses are caused by circumstellar dust disks that are either very late remnants of stellar formation or debris disks generated by planet formation. Of these 33 stars, 29 appear to be main-sequence stars on the basis of optical spectral classifications. Five of the 29 main-sequence stars are O or B stars with excesses that can be plausibly explained by thermal bremsstrahlung emission, and four are post-main-sequence stars. The lone O star is an O4 V((f)) at a spectrophotometric distance of 3233-535 +540 pc and may be the earliest member of the Westerlund 2 cluster. Of the remaining 24 main-sequence stars, 18 have spectral energy distributions that are consistent with hot dusty debris disks, a possible signature of planet formation. Modeling the excesses as blackbodies demonstrates that the blackbody components have fractional bolometric disk-to-star luminosity ratios, L IR/L*, ranging from 10-3 to 10-2 with temperatures ranging from 220 to 820 K. The inferred temperatures are more consistent with asteroid belts than with the cooler temperatures expected for Kuiper belts. Mid-IR excesses are found in all spectral types from late B to early K

    Mouse Chromosome 11

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46996/1/335_2004_Article_BF00648429.pd

    Over 1000 Newly Discovered Young Stellar Objects in the Large Magellanic Cloud from the Spitzer SAGE Survey

    No full text
    We have identified over 1000 candidate Young Stellar Objects (YSOs) in the Large Magellanic Cloud as part of the Spitzer Space Telescope Surveying the Agents of a Galaxy's Evolution (SAGE) Legacy program. The YSOs, detected by their excess infrared emission above a stellar photosphere, represent early stages of evolution, still surrounded by disks and/or infalling envelopes. The candidate YSOs were selected from regions of color-magnitude space least confused with other IR-bright populations. Our YSO list is therefore biased towards intermediate- to high-mass and young evolutionary stages, because these overlap less with galaxies and evolved stars in color-magnitude space. We derived masses of the YSOs from SED-fitting, and extrapolated the mass function using a standard IMF to compute a current star formation rate of ~0.06 M๏/yr, which is at the low-end of estimates based on total ultraviolet and infrared flux from the galaxy (~0.05-0.25 M๏/yr); and consistent with the expectation that our current YSO list is incomplete. High spatial resolution K_dark- and L-band observations at Dome C could distinguish the lower-mass YSOs from galaxies, based on their morphologies (diffuse vs. point sources). This will add thousands more YSOs to our census and improve our estimates of star formation rate, molecular cloud lifetimes, and hierarchical star formation. In addition, the high spatial resolution Dome C observations can detect multiplicity in the SAGE-identified YSOs which can be incorporated into our YSO SED models

    An Extended Search for Circularly Polarized Infrared Radiation from the OMC-1 Region of Orion

    Get PDF
    Original article can be found at :--http://www.journals.uchicago.edu/--Copyright The American Astronomical SocietyWe present new observations of circular polarization (CP) at 2.2 m in the Orion (OMC-1) molecular cloud. Our results extend a previously published study of the region.We show that the degree of CP correlates spatially with the molecular cloud and appears to be generally very low in regions dominated by H ii.We detect a feature with 3%–5% CP that extends approximately 60" to the southwest of the BN/IRc2 region. Although the morphology of the observed CP is broadly consistent with a model in which radiation from a central source (probably IRc2) is scattered by aligned spheroidal grains, we conclude that dichroic extinction in the foreground molecular cloud also plays a major role in its production. Implications of our results for the hypothesis that CP radiation imposes chiral asymmetry upon prebiotic organicmolecules in protoplanetary disks are discussed.Mechanisms invoked to explain the observed CP in the near infrared can also produce CP in the range of ultraviolet wavelengths capable of chiral selection by photolysis; however, the polarized flux is likely to be of limited spatial extent and to have lower percentage CP compared with the infrared.Peer reviewe

    An example of a rigid partial differential equation

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23127/1/0000051.pd
    corecore