226 research outputs found

    Differential activation of JNK1 isoforms by TRAIL receptors modulate apoptosis of colon cancer cell lines

    Get PDF
    Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis on binding to its receptors, death receptor 4 and 5 (DR4, DR5). TRAIL can also activate c-Jun N-terminal kinase (JNK) through the adaptor molecules, TNF receptor-associated factor 2 (TRAF2) and receptor-interacting protein (RIP). The role of JNK in TRAIL-induced tumour cell apoptosis is unclear. In this study, we demonstrate that JNK is activated by TRAIL in colon cancer cells. Inhibition of JNK with L-JNKI reduced rhTRAIL-induced cell death but enhanced cell death induced by selective activation of DR4 or DR5. This difference was unrelated to receptor internalisation or differential activation of c-Jun, but activation of different JNK isoforms. Our data demonstrate that JNK1, but not JNK2 is activated by rhTRAIL in the examined colon cancer cell lines. Although rhTRAIL activated both the long and short isoforms of JNK1, selective activation of DR4 or DR5 led to predominant activation of the short JNK1 isoforms (JNK1α1 and/or JNK1β1). Knockdown of JNK1α1 by shRNA enhanced apoptosis induced by TRAIL, agonistic DR4 or DR5 antibodies. On the other hand, knockdown of the long JNK1 isoforms (JNK1α2 and JNK1β2) had the opposite effect; it reduced TRAIL-induced cell death. These data indicate that the short JNK1 isoforms transmit an antiapoptotic signal, whereas the long isoforms (JNK1α2 or JNK1β2) act in a proapoptotic manner

    Modulation of Interleukin-1 Transcriptional Response by the Interaction between VRK2 and the JIP1 Scaffold Protein

    Get PDF
    Background. Cellular biological responses to specific stimulation are determined by a balance among signaling pathways. Protein interactions are likely to modulate these pathways. Vaccinia-related kinase-2 (VRK2) is a novel human kinase that can modulate different signaling pathways. Principal findings. We report that in vivo, the activity of JIP1-JNK complexes is downregulated by VRK2 in response to interleukin-1β. Also the reduction of endogenous VRK2 with shRNA increases the transcriptional response to IL-1β. The JIP1 scaffold protein assembles three consecutive members of a given MAPK pathway forming signaling complexes and their signal can be modulated by interactions with regulatory proteins that remain to be identified. Knocking-down JIP1 with siRNA resulted in elimination of the AP1 transcriptional response to IL-1β. VRK2, a member of novel Ser-Thr kinase family, is able to stably interact with JIP1, TAK1 and MKK7, but not JNK, and can be isolated forming oligomeric complexes with different proportions of TAK1, MKK7β1 and JNK. JIP1 assembles all these proteins in an oligomeric signalosome. VRK2 binding to the JIP1 signalosome prevents the association of JNK and results in a reduction in its phosphorylation and downregulation of AP1-dependent transcription. Conclusions/Significance. This work suggests that the intracellular level of VRK2 protein can modulate the flow through a signaling pathway and alter the response from a receptor that can be distributed by more than one pathway, and thus contribute to the cellular specificity of the response by forming alternative signaling complexes. Furthermore, the effect might be more general and affect other signaling routes assembled on the JIP1 scaffold protein for which a model is proposed.S.B., M. S-G, and C.R.S. have predoctoral fellowships from Ministerio de Educación y Ciencia, CSIC (Spain) and Fundação para a Ciência e a Tecnologia (Portugal) respectively. This work was funded by grants from Ministerio de Educación y Ciencia (SAF2004-02900, SAF2007-60242 and Consolider CSD-2007-0017), Fundación de Investigación Médica MM and Federación de Cajas de Ahorro de Castilla y León to P.A.L.Peer reviewe

    A human MAP kinase interactome.

    Get PDF
    Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps

    Public division about climate change rooted in conflicting socio-political identities

    Get PDF
    Of the climate science papers that take a position on the issue, 97% agree that climate change is caused by humans1, but less than half of the US population shares this belief2. This misalignment between scientific and public views has been attributed to a range of factors, including political attitudes, socio-economic status, moral values, levels of scientific understanding, and failure of scientific communication. The public is divided between climate change 'believers' (whose views align with those of the scientific community) and 'sceptics' (whose views are in disagreement with those of the scientific community). We propose that this division is best explained as a socio-political conflict between these opposing groups. Here we demonstrate that US believers and sceptics have distinct social identities, beliefs and emotional reactions that systematically predict their support for action to advance their respective positions. The key implication is that the divisions between sceptics and believers are unlikely to be overcome solely through communication and education strategies, and that interventions that increase angry opposition to action on climate change are especially problematic. Thus, strategies for building support for mitigation policies should go beyond attempts to improve the public’s understanding of science, to include approaches that transform intergroup relations

    A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity

    Get PDF
    The coordinated regulation of mitochondrial and nuclear activities is essential for cellular respiration and its disruption leads to mitochondrial dysfunction, a hallmark of ageing. Mitochondria communicate with nuclei through retrograde signalling pathways that modulate nuclear gene expression to maintain mitochondrial homeostasis. The monooxygenase CLK-1 (human homologue COQ7) was previously reported to be mitochondrial, with a role in respiration and longevity. We have uncovered a distinct nuclear form of CLK-1 that independently regulates lifespan. Nuclear CLK-1 mediates a retrograde signalling pathway that is conserved from Caenorhabditis elegans to humans and is responsive to mitochondrial reactive oxygen species, thus acting as a barometer of oxidative metabolism. We show that, through modulation of gene expression, the pathway regulates both mitochondrial reactive oxygen species metabolism and the mitochondrial unfolded protein response. Our results demonstrate that a respiratory enzyme acts in the nucleus to control mitochondrial stress responses and longevity

    Plasma membrane receptor mediated MAPK signaling pathways are activated in human uterine cervix at parturition

    Get PDF
    BACKGROUND: Cervical ripening resembles an inflammatory reaction. Estrogens induce leukocyte migration into tissue and factors promoting cervical remodeling and labor, although the mechanisms are only partially known. The aim of this study was to investigate whether plasma membrane receptor mediated pathways, known to be activated by estrogens and proinflammatory compounds, are involved in cervical ripening before labor. METHODS: The expression and distribution of mitogen activated protein kinases (MAPK), which transduce extracellular signals into intracellular responses through phosphorylation, and their intracellular targets transcription factors c-Jun and c-Fos proteins (AP-1) were analysed in cervical biopsies from term pregnant women (TP), immediately after parturition (PP), and from non-pregnant women (NP). Immunohistochemistry and RT-PCR techniques were used. RESULTS: Cell-specific alterations in the immunostaining pattern for MAPK were observed. The expressions of activated, phosphorylated MAPK forms pERK1/2, pJNK and p38MAPK were significantly increased in cervical stroma until TP and pERK1/2 expression was significantly enhanced in PP group. c-Jun was significantly increased in cervical stroma and smooth muscle in TP as compared to NP group. c-Fos was significantly increased in stroma, squamous epithelium and glandular epithelium in PP as compared to TP group. CONCLUSION: We report, for the first time, cell-specific activation of pMAPKs and their targets transcription factors c-Fos and c-Jun (AP-1) proteins in human uterine cervix until term pregnancy, and immediately after parturition. These results suggest a role for MAPK activation in cervical ripening before labor

    Thyrotroph Embryonic Factor Regulates Light-Induced Transcription of Repair Genes in Zebrafish Embryonic Cells

    Get PDF
    Numerous responses are triggered by light in the cell. How the light signal is detected and transduced into a cellular response is still an enigma. Each zebrafish cell has the capacity to directly detect light, making this organism particularly suitable for the study of light dependent transcription. To gain insight into the light signalling mechanism we identified genes that are activated by light exposure at an early embryonic stage, when specialised light sensing organs have not yet formed. We screened over 14,900 genes using micro-array GeneChips, and identified 19 light-induced genes that function primarily in light signalling, stress response, and DNA repair. Here we reveal that PAR Response Elements are present in all promoters of the light-induced genes, and demonstrate a pivotal role for the PAR bZip transcription factor Thyrotroph embryonic factor (Tef) in regulating the majority of light-induced genes. We show that tefβ transcription is directly regulated by light while transcription of tefα is under circadian clock control at later stages of development. These data leads us to propose their involvement in light-induced UV tolerance in the zebrafish embryo

    JNK interacting protein 1 (JIP-1) protects LNCaP prostate cancer cells from growth arrest and apoptosis mediated by 12-0-tetradecanoylphorbol-13-acetate (TPA)

    Get PDF
    12-0-tetradecanoylphorbol-13-acetate (TPA) stimulates protein kinase C (PKC) which mediates apoptosis in androgen-sensitive LNCaP human prostate cancer cells. The downstream signals of PKC that mediate TPA-induced apoptosis in LNCaP cells are unclear. In this study, we found that TPA activates the c-Jun NH2-terminal kinase (JNK)/c-Jun/AP-1 pathway. To explore the possible role that the JNK/c-Jun/AP-1 signal pathway has on TPA-induced apoptosis in LNCaP cells, we stably transfected the scaffold protein, JNK interacting protein 1 (JIP-1), which binds to JNK inhibiting its ability to phosphorylate c-Jun. TPA (10(-9)-10(-7) mol l(-1)) caused phosphorylation of JNK in both wild-type and JIP-1-transfected (LNCaP-JIP-1) cells. It resulted in phosphorylation and upregulation of expression of c-Jun protein in the wild-type LNCaP cells, but not in the JIP-1-transfected LNCaP cells. In addition, upregulation of AP-1 reporter activity by TPA (10(-9) mol l(-1)) occurred in LNCaP cells but was abrogated in LNCaP-JIP-1 cells. Thus, TPA stimulated c-Jun through JNK, and JIP-1 effectively blocked JNK. TPA (10(-12)-10(-8) mol l(-1)) treatment of LNCaP cells caused their growth inhibition, cell cycle arrest, upregulation of p53 and p21waf1, and induction of apoptosis. All of these effects were significantly attenuated when LNCaP-JIP-1 cells were similarly treated with TPA. A previous study showed that c-Jun/AP-1 blocked androgen receptor (AR) signaling by inhibiting AR binding to AR response elements (AREs) of target genes including prostate-specific antigen (PSA). Therefore, we hypothesised that TPA would not be able to disrupt the AR signal pathway in LNCaP-JIP-1 cells. Contrary to expectation, TPA (10(-9)-10(-8) mol l(-1)) inhibited DHT-induced AREs reporter activity and decreased levels of PSA in the LNCaP-JIP-1 cells. Taken together, TPA, probably by stimulation of PKC, phosphorylates JNK, which phosphorylates and increases expression of c-Jun leading to AP-1 activity. Growth control of prostate cancer cells can be mediated through the JNK/c-Jun pathway, but androgen responsiveness of these cells can be independent of this pathway, suggesting that androgen independence in progressive prostate cancer may not occur through activation of this pathway

    Anti-Arthritic Effects of Magnolol in Human Interleukin 1β-Stimulated Fibroblast-Like Synoviocytes and in a Rat Arthritis Model

    Get PDF
    Fibroblast-like synoviocytes (FLS) play an important role in the pathologic processes of destructive arthritis by producing a number of catabolic cytokines and metalloproteinases (MMPs). The expression of these mediators is controlled at the transcriptional level. The purposes of this study were to evaluate the anti-arthritic effects of magnolol (5,5′-Diallyl-biphenyl-2,2′-diol), the major bioactive component of the bark of Magnolia officinalis, by examining its inhibitory effects on inflammatory mediator secretion and the NF-κB and AP-1 activation pathways and to investigate its therapeutic effects on the development of arthritis in a rat model. The in vitro anti-arthritic activity of magnolol was tested on interleukin (IL)-1β-stimulated FLS by measuring levels of IL-6, cyclooxygenase-2, prostaglandin E2, and matrix metalloproteinases (MMPs) by ELISA and RT-PCR. Further studies on how magnolol inhibits IL-1β-stimulated cytokine expression were performed using Western blots, reporter gene assay, electrophoretic mobility shift assay, and confocal microscope analysis. The in vivo anti-arthritic effects of magnolol were evaluated in a Mycobacterium butyricum-induced arthritis model in rats. Magnolol markedly inhibited IL-1β (10 ng/mL)-induced cytokine expression in a concentration-dependent manner (2.5–25 µg/mL). In clarifying the mechanisms involved, magnolol was found to inhibit the IL-1β-induced activation of the IKK/IκB/NF-κB and MAPKs pathways by suppressing the nuclear translocation and DNA binding activity of both transcription factors. In the animal model, magnolol (100 mg/kg) significantly inhibited paw swelling and reduced serum cytokine levels. Our results demonstrate that magnolol inhibits the development of arthritis, suggesting that it might provide a new therapeutic approach to inflammatory arthritis diseases
    • …
    corecore