16,017 research outputs found
An estimate of the influence of sediment concentration and type on remote sensing penetration depth for various coastal waters
Under the assumptions of collimated light, a homogenous water column, zero molecular scattering, and constant ratio of volume scattering function to scattering coefficient, estimates of the remote sensing depth parameter, Z90, are made for various coastal waters at 540 nm. Calculations indicate that sediment concentration and type have a strong influence on remote sensing depth when concentrations are below 5 mg/theta. Above 5 mg/theta, the absorption coefficient of the sediments becomes large in comparison to that of water, causing Z90 values to be less than 2 m with only small differences between various sediment types
AFLPs: genetic markers for paternity studies in newts (Triturus vulgaris)
DNA-based genetic markers can reveal paternity whenever the direct assignment of fathers to offspring is precluded by multiple matings and internal fertilisation. Microsatellites are the current marker of choice in many behavioural studies, and have revealed important insights into genetic mating systems of European amphibians. However, the number of amphibian species for which the time-consuming designing of locus-specific microsatellite primers was successful is still limited, and the cross-utilisation of existing markers to closely related taxa seems to have a particularly low success rate. Allozymes can infer parentage without a species-specific protocol, but, due to their low degree of polymorphism, in mate choice experiments require the a priori screening of individuals. Dominant markers such as RAPDs successfully identified closely-related amphibian species and their hybrids, but might be less suited to distinguish between closely related individuals with a putatively high frequency of shared bands
Heat budget observations for the FIRE/SRB Wisconsin experiment region from October 9 through November 2, 1986
A map and concise tables are presented which show locations, pixel size, and heat budget products from the NOAA-9 satellite for the FIRE/SRB Wisconsin experiment region during the period 9 October through 2 November 1986. In addition to the operational standard products, a narrowband albedo parameter is calculated and presented based on values from AVHRR band 1. This parameter is useful in identifying and/or quantifying clouds on a global basis using a polar-stereographic grid system
Calibration of a turbidity meter for making estimates of total suspended solids concentrations and beam attenuation coefficients in field experiments
Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent
A regression technique for evaluation and quantification for water quality parameters from remote sensing data
The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined
The influence of surface waves on water circulation in a mid-Atlantic continental shelf region
The importance of wave-induced currents in different weather conditions and water depths (18.3 m and 36.6 m) is assessed in a mid-Atlantic continental-shelf region. A review of general circulation conditions is conducted. Factors which perturb the general circulation are examined using analytic techniques and limited experimental data. Actual wind and wave statistics for the region are examined. Relative magnitudes of the various currents are compared on a frequency of annual occurrence basis. Results indicated that wave-induced currents are often the same order of magnitude as other currents in the region and become more important at higher wind and wave conditions. Wind-wave and ocean-swell characteristics are among those parameters which must be monitored for the analytical computation of continental-shelf circulation
Relative phase fluctuations of two coupled one-dimensional condensates
We study the relative phase fluctuations of two one-dimensional condensates coupled along their whole extension with a local single-atom interaction. The thermal equilibrium is defined by the competition between independent longitudinal thermally excited phase fluctuations and the coupling between the condensates which locally favors identical phase. We compute the relative phase fluctuations and their correlation length as a function of the temperature and the strength of the coupling
Semi-analytical model for nonlinear light propagation in strongly interacting Rydberg gases
Rate equation models are extensively used to describe the many-body states of
laser driven atomic gases. We show that the properties of the rate equation
model used to describe nonlinear optical effects arising in interacting Rydberg
gases can be understood by considering the excitation of individual
super-atoms. From this we deduce a simple semi-analytic model that accurately
describes the Rydberg density and optical susceptibility for different
dimensionalities. We identify the previously reported universal dependence of
the susceptibility on the Rydberg excited fraction as an intrinsic property of
the rate equation model that is rooted in one-body properties. Benchmarking
against exact master equation calculations, we identify regimes in which the
semi-analytic model is particularly reliable. The performance of the model
improves in the presence of dephasing which destroys higher order atomic
coherences.Comment: 7 pages, 4 figure
GOES Satellite Observations for the FIRE/SRB Wisconsin Experiment Region from October 11 Through November 2, 1986
A map, concise tables, and satellite images are presented which show ground-site locations, GOES visible/infrared instrument counts above each site, and cloud spatial distribution for the experiment region from 11 October through 2 November 1986. The cloud images are presented near times of the afternoon NOAA-9 satellite overpasses in order to provide a qualitative aid in the interpretation of TOVS, AVHRR, and heat budget data during the FIRE/SRB experiment
- …
