
Strathprints Institutional Repository

Whitlock, Nicholas K. and Bouchoule, Isabelle (2003) Relative phase fluctuations of two coupled
one-dimensional condensates. Physical Review A, 68 (5). 053609-1. ISSN 1050-2947

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9018858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 
 
Whitlock, Nicholas K.* and Bouchoule, Isabelle (2003) Relative phase fluctuations of two coupled 
one-dimensional condensates. Physical Review A: Atomic, Molecular and Optical Physics, 68 (5). 
053609-1-053609-5. ISSN 1050-2947 
 
 
  
 
http://eprints.cdlr.strath.ac.uk/6211/
 
 
 
This is an author-produced version of a paper published in Physical Review A: Atomic, Molecular 
and Optical Physics, 68 (5). 053609-1-053609-5. ISSN 1050-2947. This version has been peer-
reviewed, but does not include the final publisher proof corrections, published layout, or pagination. 
 
Strathprints is designed to allow users to access the research output of the University 
of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained 
by the individual authors and/or other copyright owners. You may not engage in 
further distribution of the material for any profitmaking activities or any commercial 
gain. You may freely distribute both the url (http://eprints.cdlr.strath.ac.uk) and the 
content of this paper for research or study, educational, or not-for-profit purposes 
without prior permission or charge. You may freely distribute the url 
(http://eprints.cdlr.strath.ac.uk) of the Strathprints website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://eprints.cdlr.strath.ac.uk/6211/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk


ar
X

iv
:c

on
d-

m
at

/0
30

62
82

 v
2 

  1
7 

Se
p 

20
03

Relative phase fluctuations of two coupled one-dimensional condensates

Nicholas K Whitlock(1) and Isabelle Bouchoule(2)

(1) : Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK,
(2) : Institut d’Optique, 91 403 ORSAY Cedex, France

We study the relative phase fluctuations of two one-dimensional condensates coupled along their
whole extension with a local single-atom interaction. The thermal equilibrium is defined by the
competition between independent longitudinal thermally excited phase fluctuations and the cou-
pling between the condensates which locally favors identical phase. We compute the relative phase
fluctuations and their correlation length as a function of the temperature and the strength of the
coupling.

I. INTRODUCTION

Recently, longitudinal phase fluctuations in very elon-
gated Bose-Einstein condensates have been observed ex-
perimentally [1, 2]. Such phase fluctuations are charac-
teristic of one-dimensional (1D) Bose gases and appear
in the small interaction regime where ρ ≫ √

mρg/h̄, ρ
being the linear density of atoms, g the interparticle in-
teraction between atoms and m their mass. The opposite
limit, called the Tonks regime [3], where strong correla-
tions between atoms appear is not investigated in this pa-
per. For 1D Bose gases, at temperatures T much smaller
than Tρ = h̄ρ

√

ρg/m/kB, fluctuations of density are sup-
pressed and one has a quasi-condensate [4, 5, 6, 7, 8].
However fluctuations of phase, given by

〈(θ(0) − θ(r))2〉 ≃
√
mρg

πh̄ρ
ln(

√
mgρ r/h̄) +

mkBTr

h̄2ρ

are still present [4]. The logarithmic zero temperature
term is negligible when using normal experimental pa-
rameters and phase fluctuations are produced by the
thermal population of collective modes.

In this paper we are interested in the case of two elon-
gated condensates coupled along their whole extension by
a single-atom interaction which enables local transfer of
atoms from one condensate to the other. Such a situation
could be achieved using a Raman or RF coupling between
different internal states[9]. It could also model the case
of condensates in two very elongated traps coupled by
a tunnelling effect. The physics of two coupled conden-
sates, which contains the Josephson oscillations, has been
studied in a two-mode model in [10, 11, 12]. In particular
the many body ground state [11] and the thermal equi-
librium state [12] have been computed. Behind the two-
mode model the excitation spectrum of two-component
condensates coupled by a local single-atom coupling has
been calculated using the Bogoliubov theory in [13]. In
the case of two elongated condensates two effects act in
opposite directions. Longitudinal phase fluctuations in
each condensate tend to smear out the relative phase be-
tween the two condensates, while the coupling between
the condensates energetically favors the case of identical
local relative phase. The goal of this paper is to deter-
mine the relative phase of the two condensates at thermal
equilibrium as a function of the strength of the coupling.

II. FORMALISM 
FIG. 1: Situation studied in this article. Two elongated con-
densates are coupled by a interaction which enables local trans-
fer of atoms from one condensate to the other.

We are interested in pure 1D condensates where the
temperature, the interaction energy and the coupling
strength γ are all much smaller than the transverse con-
finement energy. Thus the Hamiltonian is written

H =

∫

dz

{−h̄2

2m

[

ψ†
a(z)

∂2

∂z2
ψa(z) + ψ†

b(z)
∂2

∂z2
ψb(z)

]

+ [U(z) − µ]
[

ψ†
a(z)ψa(z) + ψ†

b(z)ψb(z)
]

+
g

2

[

ψ†
a(z)ψ†

a(z)ψa(z)ψa(z) + ψ†
b(z)ψ

†
b(z)ψb(z)ψb(z)

]

−γ
[

ψ†
a(z)ψb(z) + ψ†

b(z)ψa(z)
]}

, (1)

where ψa,b are the boson annihilation operators for the
condensates labelled a and b, U(z) is the trapping po-
tential and µ is the chemical potential. Assuming that
the size of the transverse ground state a⊥ =

√

2h̄/mω⊥
is much larger than the s-wave scattering length a, the

effective coupling constant is simply g = 2h̄2

m
2a
a2

⊥

.

Following calculations made for 1D condensates [4, 8]
we expand the field operators in terms of their density ρ
and phase θ as

ψa,b(z) = eiθa,b(z)
√

ρa,b(z). (2)

The Hermitian density and phase operators obey
[ρi(z), θj(z

′)] = iδ(z − z′)δi,j [14].
As we are interested in temperatures small enough to

be in the quasi-condensate regime, density fluctuations
are small and we write

ρa,b(z) = ρ0(z) + δρa,b(z), (3)

where
δρa,b

ρ0
≪ 1 and ρ0 satisfies the Gross-Pitaevskii
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equation modified by taking µ→ µ+ γ:

[−h̄2

2m
∆ + U(z) − (µ+ γ) + g0ρ0

]√
ρ0 = 0. (4)

We also assume that the phase difference between the
condensates at a given position is small

|∆θ(z)| = |θa(z) − θb(z)| ≪ 1. (5)

The Heisenberg evolution equations for ρa,b and θa,b are
developed to first order in δρa,b, ∇θa,b and ∆θ and we
obtain

h̄∂tθa,b = − 1

2
√
ρ0

[

− h̄2

2m
∆ + U + 3gρ0 − µ

](

δρa,b√
ρ0

)

+γ
δρb,a

2ρ0
(6)

h̄∂tδρa,b = 2
√
ρ0

[

− h̄2

2m
∆ + U + gρ0 − µ

]

(θa,b
√
ρ0)

−2γρ0θb,a. (7)

The first terms on the right hand side are identical to
those for a single condensate and the second terms cou-
ple the two condensates. We perform a canonical trans-
formation to the bosonic operators

Ba,b =
δρa,b

2
√
ρ0

+ i
√
ρ0θa,b, (8)

which evolve according to

ih̄∂t









Ba

B†
a

Bb

B†
b









=

(

LGP (µ) Γ
Γ LGP (µ)

)









Ba

B†
a

Bb

B†
b









, (9)

where we have introduced the operators

LGP (α) =

(

−h̄2

2m ∆ + U− α+ 2gρ0 gρ0

−gρ0
h̄2

2m∆ − U+ α− 2gρ0

)

Γ =

(

−γ 0
0 γ

)

. (10)

Such an evolution is the same as the one given by the
standard Bogoliubov theory and we recover indeed the
same result as that of [13]. As the matrix in Eq.(9) is in-
variant by exchange of a and b, eigenvectors may be split
in two families: the symmetric eigenvectors invariant by
exchange of a and b and the antisymmetric eigenvectors
which are multiplied by -1 by exchange of a and b. The
eigenvalue equations are thus reduced to two 2 × 2 ma-
trix equations. For the symmetric family the eigenvalue
equation becomes

LGP (µ+ γ)

(

usk

vsk

)

= ǫsk

(

usk

vsk

)

(11)

and for the antisymmetric family it becomes

LGP (µ− γ)

(

unk

vnk

)

= ǫnk

(

unk

vnk

)

. (12)

As for the standard Bogoliubov theory the Hamiltonian is
then written, up to a real factor, as a sum of independent
bosonic excitations

H2 =
∑

k

ǫskb
†
skbsk +

∑

k

ǫnkb
†
nkbnk (13)

and the B operator is written

Ba,b =
∑

k

(bskusk + b†skv
∗
sk) ±

∑

k

(bnkunk + b†nkv
∗
nk)(14)

where the sums are done only on the eigenvectors nor-
malized to

∫

dz(|uk|2 − |vk|2) = 1/2.
We are interested in the correlation function of the

phase difference ∆θ which is written, after commuting
the B operators to normal order,

〈∆θ(z)∆θ(z′)〉 = 〈: ∆θ(z)∆θ(z′) :〉 +
δ(z − z′)

2ρ0
. (15)

The second term accounts for the phase fluctuations in a
coherent state with linear density ρ0 for a and b. We are
not interested in this term, and thus we will consider only
the normal ordered expectation value. If we expand this
in terms of the b operators and consider thermal equilib-
rium where no correlations between different excitations
exist, we obtain

〈:∆θ(z)∆θ(z′) :〉 =
1

ρ0

∑

k

{

〈b̂†nk b̂nk〉(f−
nkf

−
nk

∗′ + f−
nk

′f−
nk

∗)

−v∗nkf
−
nk

′ − vnkf
−
nk

∗′
}

(16)

where the prime means that we evaluate the function
at z′ and f−

nk = unk − vnk. As expected only the anti-
symmetric modes contribute because we are interested in
phase difference. This expression gives the relative phase
fluctuations once the modified Bogoliubov spectrum of
Eq.(12) has been calculated. In the following we will
give explicit results in the case of an homogeneous gas.

III. RESULTS FOR HOMOGENEOUS

CONDENSATES

We now consider an homogeneous gas with periodic
boundary conditions in a box of size L. The potential U
then vanishes and the Gross-Pitaevskii equation gives

µ = gρ0 − γ. (17)

The Bogoliubov function can be looked for in the form

usk = (2L)−
1

2 exp(ikz)Usk

vsk = (2L)−
1

2 exp(ikz)Vsk (18)
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where |Usk|2 − |Vsk|2 = 1 and similarly for the antisym-
metric modes. The Bogoliubov eigenvalue equation for
the symmetric branch then reduces to the standard Bo-
goliubov equation

(

h̄2k2

2m + gρ0 gρ0

−gρ0 −
(

h̄2k2

2m + gρ0

)

)

(

Usk

Vsk

)

= ǫsk

(

Usk

Vsk

)

(19)

whose spectrum and eigenvectors are well known. For
the antisymmetric case the eigenvalue equation becomes

(

h̄2k2

2m +gρ0+2γ gρ0

−gρ0
−h̄2k2

2m −gρ0−2γ

)

(

Unk

Vnk

)

=ǫnk

(

Unk

Vnk

)

(20)

which is simply the same as the symmetric case, with the
kinetic energy shifted by 2γ. Thus the eigenvalues and
eigenvector components are

ǫnk =
[(

h̄2k2

2m +2γ
)(

h̄2k2

2m +2γ+2gρ0

)]
1

2

Unk + Vnk =

(

h̄2k2

2m
+2γ

h̄2k2

2m
+2γ+2gρ0

)
1

4

Unk − Vnk =

(

h̄2k2

2m
+2γ

h̄2k2

2m
+2γ+2gρ0

)− 1

4

.

(21)

This two-branch spectrum was already obtained in a
more general case in [13]. In the case where γ ≫ gρ0,
these excitations are almost purely particles with Vnk ≪
Unk for any k and their energy is simply h̄2k2/2m+2γ as

expected for a particle in the state (|a〉 − |b〉)/
√

2 and of
momentum k. In the opposite case where γ ≪ gρ0, three
zones can be identified. For k ≪ 2

√
mγ/h̄ we obtain col-

lective excitations with V ≃ U and with energy 2
√
γgρ0.

For 2
√
mγ/h̄ ≪ k ≪ 2

√
mgρ0/h̄ we still have collective

excitations with V ≃ U but their energy is given by the
normal Bogoliubov dispersion law h̄k

√

gρ0/m. Finally
for k ≫ 2

√
mgρ0/h̄ excitations are just particles with

energy h̄2k2/2m.
Using the plane wave expansion (18) and the normal-

ization condition U2
nk − V 2

nk = 1 the correlation function
(16) of the relative phase fluctuation is written

〈: ∆θ(z)∆θ(z′) :〉 =
1

2ρ0L
∑

k

{

(Unk − Vnk)
2
(2nnk + 1) − 1

}

cos[k(z − z′)],(22)

where nnk = 1/(eǫnk/kBT − 1) is the occupation num-
ber for the state with energy ǫnk. Using the expression
(21) this correlation function can be computed numeri-
cally. In the following we analytically compute the phase
fluctuations using some approximations.

The terms which do not involve nk correspond to the
zero temperature contribution. As the function V 2

nk −
UnkVnk is always smaller than the corresponding function
for a single condensate, the relative phase fluctuations

will be smaller than the phase fluctuations of a single
condensate which implies

〈: ∆θ2 :〉 <
√
mgρ0

h̄ρ0
ln

(

L
√
mgρ0

h̄

)

. (23)

The whole theory is valid only for large density so that√
mgρ0/(h̄ρ0) ≪ 1 and in the experiments accessible un-

til now the size of the condensate is not large enough to
produce noticeable phase fluctuations at zero tempera-
ture.

Phase fluctuations are thus due to thermal excitation
of the collective modes and we will give a simplified ex-
pression by making several approximations. First we will
approximate the Bose factor by

nk =
kBT

ǫnk
. (24)

This is justified as this expression deviates in a signif-
icant way from the Bose occupation factor only when
nk becomes smaller than 1, ie when ǫnk > kBT , and
the contribution to phase fluctuations of those modes is
small even with the previous expression which overesti-
mates their population. Let us now consider separately
the case where γ ≫ gρ0 and the case γ ≪ gρ0.

If γ ≫ gρ0, then (Unk − Vnk)2 ≃ 1 for all k and ǫk ≃
h̄2k2/2m + 2γ. This gives, approximating the discrete
sum by an integral,

〈: ∆θ(z)∆θ(z′) :〉 =
2kBT

2πρ0

∫ ∞

−∞
dk

cos[k(z − z′)]

h̄2k2/m+ 4γ
(25)

=
kBT

2h̄ρ0

√

m

γ
e−2|z−z′|√mγ/h̄. (26)

As we consider only temperatures kBT ≪ h̄ρ0

√

gρ0/m so
that we have quasi-condensate, these phase fluctuations
are always very small.

Let us now consider the case where γ ≪ gρ0. The
modes with |k| ≫ k0 =

√
mgρ0/h̄ give a negligible contri-

bution to the phase fluctuations. Indeed for those terms
(Unk −Vnk)2 ≃ 1 and ǫk ≃ h̄2k2/2m so that their contri-
bution to the phase fluctuation is

mkBT

πh̄2ρ0

∫ ∞

k0

dk
1

k2
=

kBT
√
m

πh̄ρ0
√
gρ0

, (27)

which is always small in the regime of quasi-condensates.
Thus only the modes |k| ≪ 2

√
gρ0m/h̄ are considered for

which

(Unk − Vnk)
2 ≃ 2

√
gρ0

√

h̄2k2/m+ 4γ
(28)

and the correlation function then becomes

〈: ∆θ(z)∆θ(z′) :〉 ≃ 2kBT

ρ0π

∫ k0

0

dk
h̄2k2

m + 4γ
cos[k(z − z′)].(29)
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The integral can actually be extended to infinity as higher
k values give negligible contributions and we find

〈: ∆θ(z)∆θ(z′) :〉 =
kBT

2ρ0h̄

√

m

γ
exp

[−2
√
mγ|z − z′|
h̄

]

.(30)

Note that this expression is the same as Eq.(26), which
was not expected a priori. This formula, which give the
amplitude of the relative phase fluctuations as well as
their correlation length 1/γ is the main result of the
paper. It agrees well with the numerical calculation of
Eq.(22) as shown in Fig.2. Phase fluctuations are small
only if

kBT ≪ ρ0h̄

√

γ

m
. (31)

Note that as we assumed small relative phase difference,
this is also the limit of validity of our calculation. The
phase diagram of Fig.3 summarizes the previous results.

0 0.5 1 1.5 2 2.5 3
(z-z`)√mγ

___
/ h
_

0

0.05

0.1

0.15

0.2

0.25

<
:∆

θ(
z)

∆θ
(z

`)
:>

FIG. 2: Correlation function of the relative phase fluctuations.
The solid line is the numerical calculation of Eq.(22) with
γ = gρ0/10, T = h̄ρ0

√

γ/(2
√

mkB) and L = 100h̄/
√

mgρ0.
The dotted line is the analytical expression Eq.(30) which only
differs from the numerical expression at small separations.

IV. DYNAMICAL INTERPRETATION

The condition (31) to have small relative phase fluctua-
tions has a dynamical interpretation which is shown very
qualitatively below. In a two-mode model of the Joseph-
son coupling between two condensates of N atoms it has
been shown that if γ ≪ N∂µ/∂N , then the Josephson

�h�pg�0=m
No phase utuations

Flutuation of theT No relative phase
g�0

relative phase utuations�h2�=Lm 00
FIG. 3: Phase diagram for the fluctuations of the relative
phase between the two condensates. Only temperatures much
smaller than h̄ρ0

√

gρ0/(kB

√

m) are relevant as for larger tem-
peratures one does not have a quasi-condensate anymore. For
temperatures larger than h̄ρ0/(kBL

√

m), each condensate has
longitudinal phase fluctuations. Below the curve, which cor-
responds to Eq.(31), the coupling between the condensates is
large enough to suppress local relative phase fluctuations be-
tween the two condensates. Above this curve, there are local
relative phase fluctuations between the two condensates.

oscillation frequency is [10, 11, 12]

ωJ =
2

h̄

√

γN
∂µ

∂N
≃

√
γµ

h̄
=

√
γgρ0

h̄
. (32)

On the other hand a single elongated condensate will
experience phase fluctuations and the phase at a given
position will evolve in time. If the change of the phase
during a Josephson oscillation time is small, then the
Josephson coupling will ensure that the relative phase
between the two condensates remains zero: there will be
no relative phase fluctuations. However if the change of
the phase during a Josephson oscillation time is large,
then the Josephson coupling will not have time to adjust
the phase of one condensate with respect to the other:
there will be relative phase fluctuations of the two con-
densates. We thus have to compute the change of the
local phase of a single condensate

〈(θ(1/ωJ ) − θ(0))2〉, (33)

with the average corresponding to the thermal equilib-
rium and the coupling between the two condensates be-
ing ignored. This calculation could be done rigorously
by developing the operator θ on the collective excitation

bosonic operators bk and b†k. In the following we present a
simpler argument that gives the same order of magnitude.
We first estimate the amplitude Ak of the phase modula-
tion of wave vector k. The energy of this phase modula-
tion is just the kinetic energy N |Ak|2h̄2k2/4m which in a
classical field theory at thermal equilibrium corresponds
to an energy of kBT/2 and thus

|Ak|2 ≃ 2mkBT

h̄2k2

1

ρ0L
. (34)
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This is indeed the contribution of the mode k to phase
fluctuations as computed in Eq.(29) if γ = 0. According
to the Bogoliubov spectrum and because only modes with
|k| ≪ 2

√
gρ0m/h̄ contribute, the mode k evolves with the

frequency

ωk =
k
√
gρ0√
m

. (35)

The evolution of the phase after a Josephson oscillation
time tJ ≃ h̄/

√
γgρ0 is then written, after averaging over

the independent phases of the phase modulations,

〈(θ(tJ ) − θ(0))2〉 ≃
∑

k

|Ak|2(1 − cos(ωktJ))

≃ 2mkBT

h̄2ρ02π

∫ ∞

−∞

1 − cos(
√
tJgρ0k/

√
m)

k2
dk

≃ kBT
√
m

h̄ρ0
√
γ
. (36)

Small relative phase fluctuations of the two condensates
occurs when this quantity is small and we recover the
condition (31).

V. DISCUSSION

In conclusion we have shown that as long as the tem-
perature is small enough to fulfill Eq.(31), although there
might exist large phase fluctuations along each conden-
sate, the local relative phase of the two condensates
stays small. In the opposite case there are large fluc-
tuations of the relative phase whose correlation length
is lc = h̄/2

√
mγ. As an example let us consider the

case of two Rubidium condensates of 104 atoms elon-
gated over L = 200µm, confined transversely with an
oscillation frequency ω⊥/2π = 1 kHz and coupled using
γ = 50 Hz. The phase of each condensate changes by

about 2π from one end of the condensate to the other as
soon as T > Tφ = h̄2ρ0/(mLkB) = 1.8 nK. However the
local relative phase between the two condensates stays
much smaller than 1 if T ≪ h̄ρ0

√
γ/(kB

√
m) = 180 nK.

The calculations made here for homogeneous condensates
could be used to describe a trapped inhomogeneous gas
via a local density approximation similar to that used in
[15] as long as both the healing length lh = h̄/

√
mgρ0

and the correlation length of the phase fluctuations are
much smaller than the extension of the condensate. In
the above example, lh = 0.6µm and lc = 2µm are indeed
much smaller than L.

To measure experimentally the relative phase fluctua-
tions and their correlation length, one should perform an
interference experiment. In the case where the two states
are internal states, an intense π/2 pulse has to be applied.
Measurement of the local density of atoms in the state
|a〉 and |b〉 then gives access to the local relative phase
of the two condensates. In the case where |a〉 and |b〉 are
confined in the wells of a double well potential, the in-
terference measurement is performed via a fast release of
the confining potential followed by a time of flight long
enough for the two clouds to overlap. Indeed, the total
intensity presents fringes in the direction orthogonal to
z[16] and, at a given z, the position of the central fringe
gives the value of the local relative phase.
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