3,090 research outputs found
Calibration of the NASA-GSFC high energy cosmic ray experiment
Calibration of high energy cosmic ray experimen
Towards practical classical processing for the surface code
The surface code is unarguably the leading quantum error correction code for
2-D nearest neighbor architectures, featuring a high threshold error rate of
approximately 1%, low overhead implementations of the entire Clifford group,
and flexible, arbitrarily long-range logical gates. These highly desirable
features come at the cost of significant classical processing complexity. We
show how to perform the processing associated with an nxn lattice of qubits,
each being manipulated in a realistic, fault-tolerant manner, in O(n^2) average
time per round of error correction. We also describe how to parallelize the
algorithm to achieve O(1) average processing per round, using only constant
computing resources per unit area and local communication. Both of these
complexities are optimal.Comment: 5 pages, 6 figures, published version with some additional tex
Christ and His Kingdom: A Review of R.H. Boll
https://digitalcommons.acu.edu/crs_books/1146/thumbnail.jp
Mineralogical and chemical studies of the Putnam silt loam soil
Publication authorized November 22, 1944."This bulletin comprises the major part of the thesis presented for the Ph.D. degree in the University of Missouri by the senior author"--P. [2].Digitized 2007 AES.Includes bibliographical references (pages 45-48)
Towards practical classical processing for the surface code: timing analysis
Topological quantum error correction codes have high thresholds and are well
suited to physical implementation. The minimum weight perfect matching
algorithm can be used to efficiently handle errors in such codes. We perform a
timing analysis of our current implementation of the minimum weight perfect
matching algorithm. Our implementation performs the classical processing
associated with an nxn lattice of qubits realizing a square surface code
storing a single logical qubit of information in a fault-tolerant manner. We
empirically demonstrate that our implementation requires only O(n^2) average
time per round of error correction for code distances ranging from 4 to 512 and
a range of depolarizing error rates. We also describe tests we have performed
to verify that it always obtains a true minimum weight perfect matching.Comment: 13 pages, 13 figures, version accepted for publicatio
Antenna pattern shaping, sensing, and steering study Final report
Design of steerable satellite antenna with beam pattern sensing syste
Sex-specific fundamental and formant frequency patterns in a cross-sectional study
An extensive developmental acoustic study of the speech patterns of children and adults was reported by Lee and colleagues [Lee et al., J. Acoust. Soc. Am. 105, 1455-1468 (1999)]. This paper presents a reexamination of selected fundamental frequency and formant frequency data presented in their report for 10 monophthongs by investigating sex-specific and developmental patterns using two different approaches. The first of these includes the investigation of age- and sex-specific formant frequency patterns in the monophthongs. The second, the investigation of fundamental frequency and formant frequency data using the critical band rate (bark) scale and a number of acoustic-phonetic dimensions of the monophthongs from an age- and sex-specific perspective. These acoustic-phonetic dimensions include: vowel spaces and distances from speaker centroids; frequency differences between the formant frequencies of males and females; vowel openness/closeness and frontness/backness; the degree of vocal effort; and formant frequency ranges. Both approaches reveal both age- and sex-specific development patterns which also appear to be dependent on whether vowels are peripheral or non-peripheral. The developmental emergence of these sex-specific differences are discussed with reference to anatomical, physiological, sociophonetic and culturally determined factors. Some directions for further investigation into the age-linked sex differences in speech across the lifespan are also proposed
IRX-2, a Novel Immunotherapeutic, Enhances Functions of Human Dendritic Cells
Background: In a recent phase II clinical trial for HNSCC patients, IRX-2, a cell-derived biologic, promoted T-cell infiltration into the tumor and prolonged overall survival. Mechanisms responsible for these IRX-2-mediated effects are unknown. We hypothesized that IRX-2 enhanced tumor antigen-(TA)-specific immunity by up-regulating functions of dendritic cells (DC). Methodology/Principal Findings: Monocyte-derived DC obtained from 18 HNSCC patients and 12 healthy donors were matured using IRX-2 or a mix of TNF-α, IL-1β and IL-6 ("conv. mix"). Multicolor flow cytometry was used to study the DC phenotype and antigen processing machinery (APM) component expression. ELISPOT and cytotoxicity assays were used to evaluate tumor-reactive cytotoxic T lymphocytes (CTL). IL-12p70 and IL-10 production by DC was measured by Luminex® and DC migration toward CCL21 was tested in transwell migration assays. IRX-2-matured DC functions were compared with those of conv. mix-matured DC. IRX-2-matured DC expressed higher levels (p<0.05) of CD11c, CD40, CCR7 as well as LMP2, TAP1, TAP2 and tapasin than conv. mix-matured DC. IRX-2-matured DC migrated significantly better towards CCL21, produced more IL-12p70 and had a higher IL12p70/IL-10 ratio than conv. mix-matured DC (p<0.05 for all). IRX-2-matured DC carried a higher density of tumor antigen-derived peptides, and CTL primed with these DC mediated higher cytotoxicity against tumor targets (p<0.05) compared to the conv. mix-matured DC. Conclusion: Excellent ability of IRX-2 to induce ex vivo DC maturation in HNSCC patients explains, in part, its clinical benefits and emphasizes its utility in ex vivo maturation of DC generated for therapy. © 2013 Schilling et al
- …
