121 research outputs found
Fibrinogen adsorption and platelet adhesion to silica surfaces with stochastic nanotopography
In this study, the effect of surface nanoscale roughness on fibrinogen adsorption and platelet adhesion was investigated. Nanorough silica surfaces with a low level of surface roughness (10 nm Rrms) were found to support the same level of fibrinogen adsorption as the planar silica surfaces, while nanorough silica surfaces with higher levels of surface roughness (15 nm Rrms) were found to support significantly less fibrinogen adsorption. All surfaces analyzed were found to support the same level of platelet adhesion; however, platelets were rounded in morphology on the nanorough silica surfaces while platelets were spread with a well-developed actin cytoskeleton on the planar silica. Unique quartz crystal microbalance with dissipation monitoring (QCM-D) responses was observed for the interactions between platelets and each of the surfaces. The QCM-D data indicated that platelets were more weakly attached to the nanorough silica surfaces compared with the planar silica. These data support the role of surface nanotopography in directing platelet-surface interactions even when the adsorbed fibrinogen layer is able to support the same level of platelet adhesion
Recombinant Domain V of Human Perlecan Is a Bioactive Vascular Proteoglycan
The C-terminal domain V of the extracellular matrix proteoglycan perlecan plays unique and often divergent roles in a number of biological processes, including angiogenesis, vascular cell interactions, wound healing, and autophagy. Recombinant forms of domain V have been proposed as therapeutic agents for the treatment of cancer, stroke, and the development of cardiovascular devices and bioartificial tissues. However, the effect of domain V appears to be related to the differences in domain V structure and function observed in different expression systems and environments and exactly how this occurs is not well understood. In this study, the sequence from amino acid 3626 to 4391 of the perlecan protein core, which includes domain V, is expressed in HEK-293 cells and purified as a secreted product from conditioned media. This recombinant domain V (rDV) is expressed as a proteoglycan decorated with heparan sulfate and chondroitin sulfate chains and supports endothelial cell interactions to the same extent as full-length perlecan. This expression system serves as an important model of recombinant proteoglycan expression, as well as a source of biologically active rDV for therapeutic applications
The multifaceted roles of perlecan in fibrosis
Perlecan, or heparan sulfate proteoglycan 2 (HSPG2), is a ubiquitous heparan sulfate proteoglycan that has major roles in tissue and organ development and wound healing by orchestrating the binding and signaling of mitogens and morphogens to cells in a temporal and dynamic fashion. In this review, its roles in fibrosis are reviewed by drawing upon evidence from tissue and organ systems that undergo fibrosis as a result of an uncontrolled response to either inflammation or traumatic cellular injury leading to an over production of a collagen-rich extracellular matrix. This review focuses on examples of fibrosis that occurs in lung, liver, kidney, skin, kidney, neural tissues and blood vessels and its link to the expression of perlecan in that particular organ system
Pericellular colocalisation and interactive properties of type VI collagen and perlecan in the intervertebral disc
The aim of this study was to immunolocalise type VI collagen and perlecan and determine their interactive properties in the intervertebral disc (IVD). Confocal laser scanning microscopy co-localised perlecan with type VI collagen as pericellular components of IVD cells and translamellar cross-bridges in ovine and murine IVDs. These cross-bridges were significantly less abundant in the heparin sulphate deficient Hspg2 exon 3 null mouse IVD than in wild type. This association of type VI collagen with elastic components provides clues as to its roles in conveying elastic recoil properties to annular tissues. Perlecan and type VI collagen were highly interactive in plasmon resonance studies. Pericellular colocalisation of perlecan and type VI collagen provides matrix stabilisation and cell-matrix communication which allows IVD cells to perceive and respond to perturbations in their biomechanical microenvironment. Perlecan, at the cell surface, provides an adhesive interface between the cell and its surrounding extracellular matrix. Elastic microfibrillar structures regulate tensional connective tissue development and function. The 2010 Global Burden of Disease study examined 291 disorders and identified disc degeneration and associated low back pain as the leading global musculoskeletal disorder emphasising its massive socioeconomic impact and the need for more effective treatment strategies. A greater understanding of how the IVD achieves its unique biomechanical functional properties is of great importance in the development of such therapeutic measures
Microchannels are an architectural cue that promotes integration and vascularization of silk biomaterials in vivo
Functional integration of implanted biomaterials and bioengineered tissues in vivo requires effective and timely vascular ingrowth. While many vascularization strategies rely on delivery of angiogenic growth factors or endothelial cells to promote vascular ingrowth, the effect of physical and architectural features of biomaterials on the vascularization process is less well understood. Microchannels are a simple, accessible architectural feature frequently engineered into 3D biomaterials to promote mass transfer. In this study, the effect of microchannels on the integration and vascularization of 3D porous silk scaffolds was explored over a 14 week period. An array of 508 ÎĽm diameter microchannels spanning the length of critically sized, porous silk scaffolds significantly improved tissue ingrowth into the constructs. At week 6, all silk scaffolds (n = 8) with microchannels showed complete tissue infiltration throughout the construct, while only one of eight (12.5%) did so in the absence of microchannels. The presence of microchannels improved silk scaffold vascularization with significantly more vessels per unit area in the presence of microchannels. The vessel size distribution was similar in both scaffold types, but a shift in distribution toward smaller vessels was observed in the presence of microchannels. The blood vessels in silk scaffolds were perfused, functional and connected to the animal's cardiovascular system, as demonstrated by the presence of red blood cells in the vessel lumens, and effective delivery of a contrast agent the vessels inside the scaffold. This study demonstrates the utility of microchannels as a simple architectural feature that significantly improves vascularization and integration of implanted biomaterials
A Biomimetic Approach toward Enhancing Angiogenesis: Recombinantly Expressed Domain V of Human Perlecan Is a Bioactive Molecule That Promotes Angiogenesis and Vascularization of Implanted Biomaterials
Abstract Angiogenic therapy involving delivery of pro-angiogenic growth factors to stimulate new blood vessel formation in ischemic disease is promising but has seen limited clinical success due to issues associated with the need to deliver supra-physiological growth factor concentrations. Bio-inspired growth factor delivery utilizing the native growth factor signaling roles of the extracellular matrix proteoglycans has the potential to overcome many of the drawbacks of angiogenic therapy. In this study, the potential of the recombinantly expressed domain V (rDV) of human perlecan is investigated as a means of promoting growth factor signaling toward enhanced angiogenesis and vascularization of implanted biomaterials. rDV is found to promote angiogenesis in established in vitro and in vivo angiogenesis assays by potentiating endogenous growth factor signaling via its glycosaminoglycan chains. Further, rDV is found to potentiate fibroblast growth factor 2 (FGF2) signaling at low concentrations that in the absence of rDV are not biologically active. Finally, rDV immobilized on 3D porous silk fibroin biomaterials promotes enhanced vascular ingrowth and integration of the implanted scaffolds with the surrounding tissue. Together, these studies demonstrate the important role of this biologically active perlecan fragment and its potential in the treatment of ischemia in both native and bioengineered tissues
Microarray Method for the Rapid Detection of Glycosaminoglycan–Protein Interactions
Glycosaminoglycans (GAGs) perform numerous vital functions within the body. As major components of
the extracellular matrix, these polysaccharides participate in a diverse array of cell-signaling events. We have
developed a simple microarray assay for the evaluation of protein binding to various GAG subclasses. In a
single experiment, the binding to all members of the GAG family can be rapidly determined, giving insight
into the relative specificity of the interactions and the importance of specific sulfation motifs. The arrays
are facile to prepare from commercially available materials
- …