1,020 research outputs found

    Structural characterization of three hydride-bridged sodium aluminate compounds

    Get PDF
    Funding information MTW thanks the University of Strathclyde for funding his PhD via a Research Excellence Award.Peer reviewedPublisher PD

    Scaling of Hunter Gatherer Camp Size and Human Sociality

    Get PDF
    One of the most commonly-observed properties of human settlements, both past and present, is the tendency for larger settlements to display higher population densities. Work in urban science and archaeology suggests this densification pattern reflects an emergent spatial equilibrium where individuals balance movement costs with social interaction benefits, leading to increases in aggregate productivity and social interdependence. In this context, it is perhaps not surprising that the more temporary camps created by mobile hunters and gatherers exhibit a tendency to become less dense with their population size. Here we examine why this difference occurs and consider conditions under which hunter-gatherer groups may transition to sedentism and densification. We investigate the relationship between population and area in mobile hunter-gatherer camps using a dataset, representing a large cross-cultural sample, derived from the ethnographic literature. We present a model based on the interplay between social interactions and scalar stress for the relationship between camp area and group size that describes the observed patterns among mobile hunter-gatherers. The model highlights the tradeoffs between the costs and benefits of proximity and interaction that are common to all human aggregations and specifies the constraints that must be overcome for economies of scale and cooperation to emerge

    Adaptive venom evolution and toxicity in octopods is driven by extensive novel gene formation, expansion, and loss

    Get PDF
    Background: Cephalopods represent a rich system for investigating the genetic basis underlying organismal novelties. This diverse group of specialized predators has evolved many adaptations including proteinaceous venom. Of particular interest is the blue-ringed octopus genus (Hapalochlaena), which are the only octopods known to store large quantities of the potent neurotoxin, tetrodotoxin, within their tissues and venom gland. Findings: To reveal genomic correlates of organismal novelties, we conducted a comparative study of 3 octopod genomes, including the Southern blue-ringed octopus (Hapalochlaena maculosa). We present the genome of this species and reveal highly dynamic evolutionary patterns at both non-coding and coding organizational levels. Gene family expansions previously reported in Octopus bimaculoides (e.g., zinc finger and cadherins, both associated with neural functions), as well as formation of novel gene families, dominate the genomic landscape in all octopods. Examination of tissue-specific genes in the posterior salivary gland revealed that expression was dominated by serine proteases in non–tetrodotoxin-bearing octopods, while this family was a minor component in H. maculosa. Moreover, voltage-gated sodium channels in H. maculosa contain a resistance mutation found in pufferfish and garter snakes, which is exclusive to the genus. Analysis of the posterior salivary gland microbiome revealed a diverse array of bacterial species, including genera that can produce tetrodotoxin, suggestive of a possible production source. Conclusions: We present the first tetrodotoxin-bearing octopod genome H. maculosa, which displays lineage-specific adaptations to tetrodotoxin acquisition. This genome, along with other recently published cephalopod genomes, represents a valuable resource from which future work could advance our understanding of the evolution of genomic novelty in this family

    On the Importance of Countergradients for the Development of Retinotopy: Insights from a Generalised Gierer Model

    Get PDF
    During the development of the topographic map from vertebrate retina to superior colliculus (SC), EphA receptors are expressed in a gradient along the nasotemporal retinal axis. Their ligands, ephrin-As, are expressed in a gradient along the rostrocaudal axis of the SC. Countergradients of ephrin-As in the retina and EphAs in the SC are also expressed. Disruption of any of these gradients leads to mapping errors. Gierer's (1981) model, which uses well-matched pairs of gradients and countergradients to establish the mapping, can account for the formation of wild type maps, but not the double maps found in EphA knock-in experiments. I show that these maps can be explained by models, such as Gierer's (1983), which have gradients and no countergradients, together with a powerful compensatory mechanism that helps to distribute connections evenly over the target region. However, this type of model cannot explain mapping errors found when the countergradients are knocked out partially. I examine the relative importance of countergradients as against compensatory mechanisms by generalising Gierer's (1983) model so that the strength of compensation is adjustable. Either matching gradients and countergradients alone or poorly matching gradients and countergradients together with a strong compensatory mechanism are sufficient to establish an ordered mapping. With a weaker compensatory mechanism, gradients without countergradients lead to a poorer map, but the addition of countergradients improves the mapping. This model produces the double maps in simulated EphA knock-in experiments and a map consistent with the Math5 knock-out phenotype. Simulations of a set of phenotypes from the literature substantiate the finding that countergradients and compensation can be traded off against each other to give similar maps. I conclude that a successful model of retinotopy should contain countergradients and some form of compensation mechanism, but not in the strong form put forward by Gierer

    Interactive Simulation of Diaphragm Motion Through Muscle and Rib Kinematics

    Get PDF
    ISBN-10: 1848825641/ ISBN-13: 978-1848825642 / The original publication is available at www.springerlink.comModelling of diaphragm behaviour is of relevance to a number of clini cal procedures such as lung cancer radiotherapy and liver access interventions. The heterogeneity in tissue composition of the diaphragm, as well as the various physiological phenomena influencing its behaviour, requires a complex model in order to accurately capture its motion. In this paper we present a novel methodology based on a heterogeneous model composed of mass-spring and tensegrity elements. The physiological boundary conditions have been carefully taken into account and applied to our model. Thus, it incorporates the influence of the rib kinematics, the muscle natural contraction/relaxation and the motion of the sternum. Initial validation results show that the behaviour of the model closely follows that of a real diaphragm

    A phylogenetic hypothesis for the origin of hiccough

    Get PDF
    Summary The occurrence of hiccoughs (hiccups) is very widespread and yet their neuronal origin and physiological significance are still unresolved. Several hypotheses have been proposed. Here we consider a phylogenetic perspective, starting from the concept that the ventilatory central pattern generator of lower vertebrates provides the base upon which central pattern generators of higher vertebrates develop. Hiccoughs are characterized by glottal closure during inspiration and by early development in relation to lung ventilation. They are inhibited when the concentration of inhaled CO 2 is increased and they can be abolished by the drug baclofen (an agonist of the GABA B receptor). These properties are shared by ventilatory motor patterns of lower vertebrates, leading to the hypothesis that hiccough is the expression of archaic motor patterns and particularly the motor pattern of gill ventilation in bimodal breathers such as most frogs. A circuit that can generate hiccoughs may persist in mammals because it has permitted the development of pattern generators for other useful functions of the pharynx and chest wall muscles, such as suckling or eupneic breathing

    Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences

    Get PDF
    PMCID: PMC3566971This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
    corecore