27 research outputs found

    The iridescent enigma: genome evolution and species boundaries of the blue-ringed octopus species complex (Octopodidae: Hapalochlaena)

    Get PDF
    Brooke Whitelaw examined the evolution of the blue-ringed octopus genus (Octopodidae: Hapalochlaena) species complex. The current state of Hapalochlaena systematics was revealed to be insufficient for the species diversity observed. Furthermore, evolution of the Hapalochlaena genome revealed distinct differences to non-tetrodotoxin (TTX) bearing octopod genomes. This work provides a genetic basis for systematic re-evaluation of the genus, in conjunction with an annotated genome and linkage map for H. maculosa

    SNP data reveals the complex and diverse evolutionary history of the blue-ringed octopus genus (Octopodidae: Hapalochlaena) in the Asia-Pacific

    Get PDF
    The blue-ringed octopus species complex (Hapalochlaena spp.), known to occur from Southern Australia to Japan, currently contains four formally described species (Hapalochlaena maculosa, Hapalochlaena fasciata, Hapalochlaena lunulata and Hapalochlaena nierstraszi). These species are distinguished based on morphological characters (iridescent blue rings and/or lines) along with reproductive strategies. However, the observation of greater morphological diversity than previously captured by the current taxonomic framework indicates that a revision is required. To examine species boundaries within the genus we used mitochondrial (12S rRNA, 16S rRNA, cytochrome c oxidase subunit 1 [COI], cytochrome c oxidase subunit 3 [COIII] and cytochrome b [Cytb]) and genome-wide SNP data (DaRT seq) from specimens collected across its geographic range including variations in depth from 3 m to >100 m. This investigation indicates substantially greater species diversity present within the genus Hapalochlaena than is currently described. We identified 10,346 SNPs across all locations, which when analysed support a minimum of 11 distinct clades. Bayesian phylogenetic analysis of the mitochondrial COI gene on a more limited sample set dates the diversification of the genus to ∼30 mya and corroborates eight of the lineages indicated by the SNP analyses. Furthermore, we demonstrate that the diagnostic lined patterning of H. fasciata found in North Pacific waters and NSW, Australia is polyphyletic and therefore likely the result of convergent evolution. Several “deep water” (>100 m) lineages were also identified in this study with genetic convergence likely to be driven by external selective pressures. Examination of morphological traits, currently being undertaken in a parallel morphological study, is required to describe additional species within the complex

    Coupled genomic evolutionary histories as signatures of organismal innovations in cephalopods: co-evolutionary signatures across levels of genome organization may shed light on functional linkage and origin of cephalopod novelties

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ritschard, E. A., Whitelaw, B., Albertin, C. B., Cooke, I. R., Strugnell, J. M., & Simakov, O. Coupled genomic evolutionary histories as signatures of organismal innovations in cephalopods: co-evolutionary signatures across levels of genome organization may shed light on functional linkage and origin of cephalopod novelties. BioEssays, 41, (2019): 1900073, doi: 10.1002/bies.201900073.How genomic innovation translates into organismal organization remains largely unanswered. Possessing the largest invertebrate nervous system, in conjunction with many species‐specific organs, coleoid cephalopods (octopuses, squids, cuttlefishes) provide exciting model systems to investigate how organismal novelties evolve. However, dissecting these processes requires novel approaches that enable deeper interrogation of genome evolution. Here, the existence of specific sets of genomic co‐evolutionary signatures between expanded gene families, genome reorganization, and novel genes is posited. It is reasoned that their co‐evolution has contributed to the complex organization of cephalopod nervous systems and the emergence of ecologically unique organs. In the course of reviewing this field, how the first cephalopod genomic studies have begun to shed light on the molecular underpinnings of morphological novelty is illustrated and their impact on directing future research is described. It is argued that the application and evolutionary profiling of evolutionary signatures from these studies will help identify and dissect the organismal principles of cephalopod innovations. By providing specific examples, the implications of this approach both within and beyond cephalopod biology are discussed.E.A.R. and O.S. are supported by the Austrian Science Fund (Grant No. P30686‐B29). E.A.R. is supported by Stazione Zoologica Anton Dohrn (Naples, Italy) PhD Program. The authors wish to thank Graziano Fiorito (SZN, Italy), Hannah Schmidbaur (University of Vienna, Austria), Thomas Hummel (University of Vienna, Austria) for many insightful comments and reading of the draft manuscript. The authors would like to apologize to all colleagues whose work has been omitted due to space constraints

    High-Density Genetic Linkage Map of the Southern Blue-ringed Octopus (Octopodidae: Hapalochlaena maculosa)

    Get PDF
    Genetic linkage maps provide a useful resource for non-model genomes and can aid in genome reassembly to form more contiguous pseudo-chromosomes. We present the first linkage map of any cephalopod, H. maculosa, composed of 47 linkage groups (LG). A total of 2166 single nucleotide polymorphisms and 2455 presence–absence variant loci were utilised by Lep-Map3 in linkage map construction. The map length spans 2016.62 cM with an average marker distance of 0.85 cM. Integration of the recent H. maculosa genome allowed 1151 scaffolds comprising 34% of the total genomic sequence to be orientated and/or placed using 1278 markers across all 47 LG. The linkage map generated provides a new perspective on HOX gene distribution in octopods. In the H. maculosa linkage map three (SCR, LOX4 and POST1) of six identified HOX genes (HOX1/LAB, SCR, LOX2, LOX4, LOX5, POST1) were located within the same LG (LG 9). The generation of a linkage map for H. maculosa has provided a valuable resource for understanding the evolution of cephalopod genomes and will provide a base for future work

    Adaptive venom evolution and toxicity in octopods is driven by extensive novel gene formation, expansion, and loss

    Get PDF
    Background: Cephalopods represent a rich system for investigating the genetic basis underlying organismal novelties. This diverse group of specialized predators has evolved many adaptations including proteinaceous venom. Of particular interest is the blue-ringed octopus genus (Hapalochlaena), which are the only octopods known to store large quantities of the potent neurotoxin, tetrodotoxin, within their tissues and venom gland. Findings: To reveal genomic correlates of organismal novelties, we conducted a comparative study of 3 octopod genomes, including the Southern blue-ringed octopus (Hapalochlaena maculosa). We present the genome of this species and reveal highly dynamic evolutionary patterns at both non-coding and coding organizational levels. Gene family expansions previously reported in Octopus bimaculoides (e.g., zinc finger and cadherins, both associated with neural functions), as well as formation of novel gene families, dominate the genomic landscape in all octopods. Examination of tissue-specific genes in the posterior salivary gland revealed that expression was dominated by serine proteases in non–tetrodotoxin-bearing octopods, while this family was a minor component in H. maculosa. Moreover, voltage-gated sodium channels in H. maculosa contain a resistance mutation found in pufferfish and garter snakes, which is exclusive to the genus. Analysis of the posterior salivary gland microbiome revealed a diverse array of bacterial species, including genera that can produce tetrodotoxin, suggestive of a possible production source. Conclusions: We present the first tetrodotoxin-bearing octopod genome H. maculosa, which displays lineage-specific adaptations to tetrodotoxin acquisition. This genome, along with other recently published cephalopod genomes, represents a valuable resource from which future work could advance our understanding of the evolution of genomic novelty in this family

    Vitamin D and Its Role During Pregnancy in Attaining Optimal Health of Mother and Fetus

    Get PDF
    Despite its discovery a hundred years ago, vitamin D has emerged as one of the most controversial nutrients and prohormones of the 21st century. Its role in calcium metabolism and bone health is undisputed but its role in immune function and long-term health is debated. There are clear indicators from in vitro and animal in vivo studies that point to vitamin D’s indisputable role in both innate and adaptive immunity; however, the translation of these findings to clinical practice, including the care of the pregnant woman, has not occurred. Until recently, there has been a paucity of data from randomized controlled trials to establish clear cut beneficial effects of vitamin D supplementation during pregnancy. An overview of vitamin metabolism, states of deficiency, and the results of recent clinical trials conducted in the U.S. are presented with an emphasis on what is known and what questions remain to be answered

    Molecular techniques and their limitations shape our view of the holobiont

    Get PDF
    It is now recognised that the biology of almost any organism cannot be fully understood without recognising the existence and potential functional importance of associated microbes. Arguably, the emergence of this holistic viewpoint may never have occurred without the development of a crucial molecular technique, 16S rDNA amplicon sequencing, which allowed microbial communities to be easily profiled across a broad range of contexts. A diverse array of molecular techniques are now used to profile microbial communities, infer their evolutionary histories, visualise them in host tissues, and measure their molecular activity. In this review, we examine each of these categories of measurement and inference with a focus on the questions they make tractable, and the degree to which their capabilities and limitations shape our view of the holobiont

    High-Density Genetic Linkage Map of the Southern Blue-ringed Octopus (Octopodidae: Hapalochlaena maculosa)

    No full text
    Genetic linkage maps provide a useful resource for non-model genomes and can aid in genome reassembly to form more contiguous pseudo-chromosomes. We present the first linkage map of any cephalopod, H. maculosa, composed of 47 linkage groups (LG). A total of 2166 single nucleotide polymorphisms and 2455 presence–absence variant loci were utilised by Lep-Map3 in linkage map construction. The map length spans 2016.62 cM with an average marker distance of 0.85 cM. Integration of the recent H. maculosa genome allowed 1151 scaffolds comprising 34% of the total genomic sequence to be orientated and/or placed using 1278 markers across all 47 LG. The linkage map generated provides a new perspective on HOX gene distribution in octopods. In the H. maculosa linkage map three (SCR, LOX4 and POST1) of six identified HOX genes (HOX1/LAB, SCR, LOX2, LOX4, LOX5, POST1) were located within the same LG (LG 9). The generation of a linkage map for H. maculosa has provided a valuable resource for understanding the evolution of cephalopod genomes and will provide a base for future work

    Industry and the interior life: industrial 'experts' and the mental world of workers in twentieth century Britain

    No full text
    This thesis explores representations and discussion of the ‘interior’ life of industrial workers in psychological, literary and sociological discourse published between 1900 and 1970 in twentieth-century Britain. The attempts of amateur and professional psychologists, writers and sociologists to uncover, decipher and accurately represent the mental world of industrial workers is examined with reference to broader medical and psychological conceptualisations of the influences and effects that different types of labour exercised over the minds and bodies of individuals. The following chapters focus upon industrial psychological, sociological and autobiographical literature from the period, tracing contrasting explanations and solutions for expressions of unease and dissatisfaction in industrial environments. The main themes explored include discussion of ‘industrial misfits’ and ‘neurotic’ workers in published industrial psychological literature during the inter-war period. This thesis will also include analysis of the testimonies of non-specialist Mass-Observers and the contrasting postwar industrial sociological studies on the Affluent Worker produced by sociologists John Goldthorpe, David Lockwood and Ferdynand Zweig. Of central concern in this thesis, are the different ways in which specific groups of industrial ‘experts’ approached the issue of subjectivity; the reasons behind their interest, their preoccupations, methods, and the various obstacles and criticisms they met with in their attempts at observation, control and categorisation of feeling. Contemporary intellectual debates and preoccupations surrounding how to study, understand and interpret emotional well-being of workers within industrial contexts has been presented as a rich and under-researched area in current historiography. This thesis argues that such literature needs to be re-examined in terms of its contribution to historical understandings of the relationship between work, material conditions and mental health in twentieth century Britain

    Toxicity in cephalopods

    No full text
    Cephalopods are a morphologically diverse molluscan class that includes octopuses, cuttlefishes, squids, and nautiluses. The behavior, morphology, and sometimes aposematic appearance of coleoid cephalopods (octopuses, cuttlefishes, and squids) are highly suggestive of the widespread use of toxins for predation and/or defense. Many cephalopods use a combination of their parrot-like beak and/or toothed radula to inject venomous saliva, thought to be produced in the posterior salivary gland, into prey through a bite wound or a hole drilled into the shell. However, relatively few toxins have been studied to date from only a narrow range of cephalopods. Active components that have been identified from cephalopod posterior salivary gland extracts (or saliva) include neurotoxins such as tetrodotoxin (also found in body tissues), tachykinins and cephalotoxins, biogenic amines such as serotonin and octopamine, and a diverse range of enzymes including serine proteases, phospholipase A2, hyaluronidases, and chitinases. Coleoid cephalopods represent excellent candidates for biodiscovery, being taxonomically distinct from heavily studied venom-producing organisms, and because their venoms appear to be complexmixtures of proteins and smallmolecules. Understanding the evolutionary history of toxicity in cephalopods remains a challenge, with many major taxa remaining unstudied and very little specific functional information available onmost cephalopod toxins. The application of "omics" technologies to research on venoms and other toxic secretions ("venomics") is an important and powerful way of characterizing entire suites of proteinaceous toxins from pure venom or gland extracts in cephalopods and is likely to yield future insights into the evolution of toxicity in this class
    corecore