900 research outputs found

    The neonicotinoid insecticide Imidacloprid repels pollinating flies and beetles at field-realistic concentrations

    Get PDF
    Neonicotinoids are widely used systemic insecticides which, when applied to flowering crops, are translocated to the nectar and pollen where they may impact upon pollinators. Given global concerns over pollinator declines, this potential impact has recently received much attention. Field exposure of pollinators to neonicotinoids depends on the concentrations present in flowering crops and the degree to which pollinators choose to feed upon them. Here we describe a simple experiment using paired yellow pan traps with or without insecticide to assess whether the commonly used neonicotinoid imidacloprid repels or attracts flying insects. Both Diptera and Coleoptera exhibited marked avoidance of traps containing imidacloprid at a field-realistic dose of 1 μg L-1, with Diptera avoiding concentrations as low as 0.01 μg L-1. This is to our knowledge the first evidence for any biological activity at such low concentrations, which are below the limits of laboratory detection using most commonly available techniques. Catch of spiders in pan traps was also slightly reduced by the highest concentrations of imidacloprid used (1 μg L-1), but catch was increased by lower concentrations. It remains to be seen if the repellent effect on insects occurs when neonicotinoids are present in real flowers, but if so then this could have implications for exposure of pollinators to neonicotinoids and for crop pollination. © 2013 Easton, Goulson

    The neural and physiological substrates of real-world attention change across development.

    Get PDF
    The ability to allocate and maintain visual attention enables us to adaptively regulate perception and action, guiding strategic behaviour within complex, dynamic environments. This capacity to regulate attention develops rapidly over the early years of life, and underpins all subsequent cognitive development and learning. From screen-based experiments we know something about how attention control is instantiated in the developing brain, but we currently understand little about the development of the capacity for attention control within complex, dynamic, real-world settings. To address this, we recorded brain activity, autonomic arousal and spontaneous attention patterns in N=58 5- and 10-month-old infants during free play. We used time series analyses to examine whether changes in autonomic arousal and brain activity anticipate attention changes or follow on from them. Early in infancy, slow-varying fluctuations in autonomic arousal forward-predicted attentional behaviours, but cortical activity did not. By later infancy, fluctuations in fronto-central theta power associated with changes in infants’ attentiveness and predicted the length of infants’ attention durations. But crucially, changes in cortical power followed, rather than preceded, infants’ attention shifts, suggesting that processes after an attention shift determine how long that episode will last. We also found that changes in fronto-central theta power modulated changes in arousal at 10 but not 5 months. Collectively, our results suggest that the modulation of real-world attention involves both arousal-based and cortical processes but point to an important developmental transition. As development progresses, attention control systems become dynamically integrated and cortical processes gain greater control over modulating both arousal and attention in naturalistic real-world settings

    P-splines with derivative based penalties and tensor product smoothing of unevenly distributed data

    Get PDF
    The P-splines of Eilers and Marx (1996) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a reduced rank spline like smoother. P-splines have three properties that make them very popular as reduced rank smoothers: i) the basis and the penalty are sparse, enabling efficient computation, especially for Bayesian stochastic simulation; ii) it is possible to flexibly `mix-and-match' the order of B-spline basis and penalty, rather than the order of penalty controlling the order of the basis as in spline smoothing; iii) it is very easy to set up the B-spline basis functions and penalties. The discrete penalties are somewhat less interpretable in terms of function shape than the traditional derivative based spline penalties, but tend towards penalties proportional to traditional spline penalties in the limit of large basis size. However part of the point of P-splines is not to use a large basis size. In addition the spline basis functions arise from solving functional optimization problems involving derivative based penalties, so moving to discrete penalties for smoothing may not always be desirable. The purpose of this note is to point out that the three properties of basis-penalty sparsity, mix-and-match penalization and ease of setup are readily obtainable with B-splines subject to derivative based penalization. The penalty setup typically requires a few lines of code, rather than the two lines typically required for P-splines, but this one off disadvantage seems to be the only one associated with using derivative based penalties. As an example application, it is shown how basis-penalty sparsity enables efficient computation with tensor product smoothers of scattered data

    Lowering IceCube's energy threshold for point source searches in the Southern Sky

    Get PDF
    Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current ν μ interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (~100 TeV) starting event in the sample found that this event alone represents a 2.8σ deviation from the hypothesis that the data consists only of atmospheric background.Fil: Aartsen, M. G.. University of Adelaide; AustraliaFil: Abraham, K.. Technische Universität München; AlemaniaFil: Ackermann, M.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Adams, J.. University Of Canterbury; Nueva ZelandaFil: Aguilar, J. A.. Université Libre de Bruxelles; BélgicaFil: Golup, Geraldina Tamara. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Wallace, A.. University of Adelaide; AustraliaFil: Wallraff, M.. Rwth Aachen University; AlemaniaFil: Wandkowsky, N.. University of Wisconsin; Estados UnidosFil: Weaver, Ch.. University of Alberta; CanadáFil: Wendt, C.. University of Wisconsin; Estados UnidosFil: Westerhoff, S.. University of Wisconsin; Estados UnidosFil: Whelan, B. J.. University of Adelaide; AustraliaFil: Whitehorn, N.. University of California at Berkeley; Estados UnidosFil: Wickmann, S.. Rwth Aachen University; AlemaniaFil: Wiebe, K.. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Wiebusch, C. H.. Rwth Aachen University; AlemaniaFil: Wille, L.. University of Wisconsin; Estados UnidosFil: Williams, D. R.. University of Alabama at Birmingahm; Estados UnidosFil: Wills, L.. Drexel University; Estados UnidosFil: Wissing, H.. University of Maryland; Estados UnidosFil: Wolf, M.. Stockholms Universitet; SueciaFil: Wood, T. R.. University of Alberta; CanadáFil: Woschnagg, K.. University of California at Berkeley; Estados UnidosFil: Xu, D. L.. University of Wisconsin; Estados UnidosFil: Xu, X. W.. Southern University; Estados UnidosFil: Xu, Y.. Stony Brook University; Estados UnidosFil: Yanez, J. P.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Yodh, G.. University of California at Irvine; Estados UnidosFil: Yoshida, S.. Chiba University; JapónFil: Zoll, M.. Stockholms Universitet; Sueci

    Chytrid epidemics may increase genetic diversity of a diatom spring-bloom

    Get PDF
    Contrary to expectation, populations of clonal organisms are often genetically highly diverse. In phytoplankton, this diversity is maintained throughout periods of high population growth (that is, blooms), even though competitive exclusion among genotypes should hypothetically lead to the dominance of a few superior genotypes. Genotype-specific parasitism may be one mechanism that helps maintain such high-genotypic diversity of clonal organisms. Here, we present a comparison of population genetic similarity by estimating the beta-dispersion among genotypes of early and peak bloom populations of the diatom Asterionella formosa for three spring-blooms under high or low parasite pressure. The Asterionella population showed greater beta-dispersion at peak bloom than early bloom in the 2 years with high parasite pressure, whereas the within group dispersion did not change under low parasite pressure. Our findings support that high prevalence parasitism can promote genetic diversification of natural populations of clonal hosts

    CMB Polarization B-mode Delensing with SPTpol and Herschel

    Full text link
    We present a demonstration of delensing the observed cosmic microwave background (CMB) B-mode polarization anisotropy. This process of reducing the gravitational-lensing generated B-mode component will become increasingly important for improving searches for the B modes produced by primordial gravitational waves. In this work, we delens B-mode maps constructed from multi-frequency SPTpol observations of a 90 deg2^2 patch of sky by subtracting a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing potential map estimated from the Herschel\textit{Herschel} 500μm500\,\mu m map of the CIB. We find that our delensing procedure reduces the measured B-mode power spectrum by 28% in the multipole range 300<<2300300 < \ell < 2300; this is shown to be consistent with expectations from theory and simulations and to be robust against systematics. The null hypothesis of no delensing is rejected at 6.9σ6.9 \sigma. Furthermore, we build and use a suite of realistic simulations to study the general properties of the delensing process and find that the delensing efficiency achieved in this work is limited primarily by the noise in the lensing potential map. We demonstrate the importance of including realistic experimental non-idealities in the delensing forecasts used to inform instrument and survey-strategy planning of upcoming lower-noise experiments, such as CMB-S4.Comment: 17 pages, 10 figures. Comments are welcome
    corecore