1,289 research outputs found

    Antimicrobial properties of modified graphene and other advanced 2D material coated surfaces.

    Get PDF
    Most reference texts covering two-dimensional materials focus specifically on graphene, when in reality, there are a host of new two-dimensional materials poised to overtake graphene. This book provides an authoritative source of information on two dimensional materials covering a plethora of fields and subjects and outlining all two-dimensional materials in terms of their fundamental understanding, synthesis, and applications

    A comparison of vegetable leaves and replicated biomimetic surfaces on the binding of Escherichia coli and Listeria monocytogenes

    Get PDF
    Biofouling in the food industry is a huge issue, and one possible way to reduce surface fouling is to understand how naturally cleaning surfaces based on biomimetic designs influence bacterial binding. Four self-cleaning leaves (Tenderheart cabbage, Cauliflower, White cabbage and Leek) were analysed for their surface properties and artificial re-plicates were produced. The leaves and surfaces were subjected to attachment, adhesion and retention assays using Escherichia coli and Listeria monocytogenes. For the attachment assays, the lowest cell numbers occurred on the least hydrophobic and smooth surfaces but were higher than the flat control surface, regardless of the strain. Following the ad-hesion assays, using L. monocytogenes, the Tenderheart and Cauliflower biomimetic re-plicated leaves resulted in significantly lowered cell adhesion. Following the retention assays, White cabbage demonstrated lower cell retention for both types of bacteria on the biomimetic replicated surface compared to the flat control surface. The biomimetic sur-faces were also more efficient at avoiding bacterial retention than natural leaves, with reductions of about 1 and 2 Log in L. monocytogenes and E. coli retention, respectively, on most of the produced surfaces. Although the surfaces were promising in reducing bac-terial binding, the results suggested that different experimental assays exerted different influences on the conclusions. This work demonstrated that consideration needs to be given to the environmental factors where the surface is to be used and that bacterial species influence the propensity of biofouling on a surface. (c) 2022 The Author(s). Published by Elsevier Ltd on behalf of Institution of Chemical Engineers. This is an open access article under the CC BY license (http://creative-commons.org/licenses/by/4.0/)

    Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling

    Get PDF
    The development of self-cleaning biomimetic surfaces has the potential to be of great benefit to human health, in addition to reducing the economic burden on industries worldwide. Consequently, this study developed a biomimetic wax surface using a moulding technique which emulated the topography of the self-cleaning Gladiolus hybridus (Gladioli) leaf. A comparison of topographies was performed for unmodified wax surfaces (control), biomimetic wax surfaces, and Gladioli leaves using optical profilometry and scanning electron microscopy. The results demonstrated that the biomimetic wax surface and Gladioli leaf had extremely similar surface roughness parameters, but the water contact angle of the Gladioli leaf was significantly higher than the replicated biomimetic surface. The self-cleaning properties of the biomimetic and control surfaces were compared by measuring their propensity to repel Escherichia coli and Listeria monocytogenes attachment, adhesion, and retention in mono-and co-culture conditions. When the bacterial assays were carried out in monoculture, the biomimetic surfaces retained fewer bacteria than the control surfaces. However, when using co-cultures of the bacterial species, only following the retention assays were the bacterial numbers reduced on the biomimetic surfaces. The results demonstrate that such surfaces may be effective in reducing biofouling if used in the appropriate medical, marine, and industrial scenarios. This study provides valuable insight into the anti-fouling physical and chemical control mechanisms found in plants, which are particularly appealing for engineering purposes

    Picosecond Laser Surface Micro/Nano Texturing of Stainless Steel as a Method to Reduce the Adhesion of Bacteria.

    Get PDF
    Biofilm formation and colonization is initiated by bacterial attachment followed by bacterial adhesion and retention on a surface. The buildup of biofilms may result in related health problems in the medical field and potential biofouling issues in industrial settings leading to increased economic burden. The design and manufacture surfaces that prevent bacterial attachment, retention and biofilm formation through their physical structure and chemical properties provides a potential solution to tackle such issues. Laser surface texturing provides a crucial role for the production of different antifouling surface patterns for use in a diverse range of applications in different medical or industrial fields. In the present work, a 1064 nm Nd:YVO4 Picosecond laser was used to produce a range of textures on 316L stainless steel (SS) substrates. Results showed that the Sa values and wettability of the surfaces all increased when compared to the control following laser treatment. This work demonstrated that on all the surfaces, for all the assays, the number of adhesive bacteria on the laser textured surfaces was reduced compared to the untreated substrate. One surface was demonstrated to be the best antiadhesive surface which was of higher roughness and superhydrophobicit

    Microbial fuel cells: An overview of current technology

    Get PDF
    Research into alternative renewable energy generation is a priority, due to the ever-increasing concern of climate change. Microbial fuel cells (MFCs) are one potential avenue to be explored, as a partial solution towards combating the over-reliance on fossil fuel based electricity. Limitations have slowed the advancement of MFC development, including low power generation, expensive electrode materials and the inability to scale up MFCs to industrially relevant capacities. However, utilisation of new advanced electrode-materials (i.e. 2D nanomaterials), has promise to advance the field of electromicrobiology. New electrode materials coupled with a more thorough understanding of the mechanisms in which electrogenic bacteria partake in electron transfer could dramatically increase power outputs, potentially reaching the upper extremities of theoretical limits. Continued research into both the electrochemistry and microbiology is of paramount importance in order to achieve industrial-scale development of MFCs. This review gives an overview of the current field and knowledge in regards to MFCs and discusses the known mechanisms underpinning MFC technology, which allows bacteria to facilitate in electron transfer processes. This review focusses specifically on enhancing the performance of MFCs, with the key intrinsic factor currently limiting power output from MFCs being the rate of electron transfer to/from the anode; the use of advanced carbon-based materials as electrode surfaces is discussed

    Comparison of detection methods used to determine Escherichia coli and meat exudate removal from stainless steel surfaces following different physical cleaning methods.

    Get PDF
    Food products can be contaminated by residual organic materials and food-borne pathogenic microorganisms through contact with biofouling present on surfaces. Efficient cleaning is needed to maintain hygienic requirements and for quality assurance of food contact surfaces. To evaluate the efficacy of cleaning procedures, it is essential to use reliable detection and quantification methods that can detect both organic material and microorganisms retained on surfaces. Repeated fouling with both organic material (meat exudate) and microorganisms (Escherichia coli) on 304 2B finish stainless steel surfaces was carried out. The surfaces were then cleaned using either a soak, spray or wipe method (in water) in order compare various biofouling detection methods. Following enumeration of the microorganisms by plate counting, the results demonstrated that the soak and spray washes were the best cleaning methods, whereas the wipe clean produced the least hygienic surface. ATP bioluminescence further demonstrated that the spray cleaned surface was the most hygienic followed by the soaked cleaned surfaces. However, percentage coverage counts demonstrated that the number of retained cells on following the soak wash was the greatest (77.38 % after 30 washes) and the amount of organic material retained was greater than 50% on all the surfaces, and was not significantly different between the different types of cleans or number of washes. Visualisation of the surfaces using epifluorescence microscopy and scanning electron microscopy demonstrated that the soak clean was the least hygienic in terms of bacterial retention. This suggests that the biofouling on the surface was difficult to remove following the soak cleaning method. UV detection demonstrated that it was difficult to detect organic material, regardless of the cleaning method used. However, when using more intense UV at selected wavelengths, the 330 nm - 360 nm illuminated the retained biofouling on the surfaces with the greatest intensity. The use of the different cleaning assays resulted in differences in cell and organic material distribution across the surfaces. The recorded level of contamination varied depending on the detection method used in this study. Our results highlighted that, in addition to the quantification method, visual images and quantification may help to better understand the fouling process on surfaces since certain cleaning methods may result in organic material being difficult to remove and detect

    The use of biomimetic surfaces to reduce single- and dual-species biofilms of Escherichia coli and Pseudomonas putida

    Get PDF
    The ability of bacteria to adhere to and form biofilms on food contact surfaces poses serious challenges, as these may lead to the cross-contamination of food products. Biomimetic topographic surface modifications have been explored to enhance the antifouling performance of materials. In this study, the topography of two plant leaves, Brassica oleracea var. botrytis (cauliflower, CF) and Brassica oleracea capitate (white cabbage, WC), was replicated through wax moulding, and their antibiofilm potential was tested against single- and dual-species biofilms of Escherichia coli and Pseudomonas putida. Biomimetic surfaces exhibited higher roughness values (SaWC = 4.0 ± 1.0 μm and SaCF = 3.3 ± 1.0 μm) than the flat control (SaF = 0.6 ± 0.2 μm), whilst the CF surface demonstrated a lower interfacial free energy (ΔGiwi) than the WC surface (−100.08 mJ m−2 and −71.98 mJ m−2, respectively). The CF and WC surfaces had similar antibiofilm effects against single-species biofilms, achieving cell reductions of approximately 50% and 60% for E. coli and P. putida, respectively, compared to the control. Additionally, the biomimetic surfaces led to reductions of up to 60% in biovolume, 45% in thickness, and 60% in the surface coverage of single-species biofilms. For dual-species biofilms, only the E. coli strain growing on the WC surface exhibited a significant decrease in the cell count. However, confocal microscopy analysis revealed a 60% reduction in the total biovolume and surface coverage of mixed biofilms developed on both biomimetic surfaces. Furthermore, dual-species biofilms were mainly composed of P. putida, which reduced E. coli growth. Altogether, these results demonstrate that the surface properties of CF and WC biomimetic surfaces have the potential for reducing biofilm formation

    Production of hybrid macro/micro/nano surface structures on Ti6Al4V surfaces by picosecond laser surface texturing and their antifouling characteristics

    Get PDF
    The development of surfaces which reduce biofouling has attracted much interest in practical applications. Three picosecond laser generated surface topographies (Ti1, Ti2, Ti3) on titanium were produced, treated with fluoroalkylsilane (FAS), then characterised using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Raman Spectroscopy, Fourier Transform Infra-Red (FTIR) spectroscopy, contact angle measurements and white light interference microscopy. The surfaces had a range of different macro/micro/nano topographies. Ti2 had a unique, surface topography with large blunt conical peaks and was predominantly a rutile surface with closely packed, self-assembled FAS; this was the most hydrophobic sample (water contact angle 160°; ΔGiwi was −135.29 mJ m−2). Bacterial attachment, adhesion and retention to the surfaces demonstrated that all the laser generated surfaces retained less bacteria than the control surface. This also occurred following the adhesion and retention assays when the bacteria were either not rinsed from the surfaces or were retained in static conditions for one hour. This work demonstrated that picosecond laser generated surfaces may be used to produce antiadhesive surfaces that significantly reduced surface fouling. It was determined that a tri-modally dimensioned surface roughness, with a blunt conical macro-topography, combined with a close-packed fluoroalkyl monolayer was required for an optimised superhydrophobic surface. These surfaces were effective even following surface immersion and static conditions for one hour, and thus may have applications in a number of food or medical industries

    How do Graphene Composite Surfaces Affect the Development and Structure of Marine Cyanobacterial Biofilms?

    Get PDF
    The progress of nanotechnology has prompted the development of novel marine antifouling coatings. In this study, the influence of a pristine graphene nanoplatelet (GNP)-modified surface in cyanobacterial biofilm formation was evaluated over a long-term assay using an in vitro platform which mimics the hydrodynamic conditions that prevail in real marine environments. Surface characterization by Optical Profilometry and Scanning Electron Microscopy has shown that the main difference between GNP incorporated into a commercially used epoxy resin (GNP composite) and both control surfaces (glass and epoxy resin) was related to roughness and topography, where the GNP composite had a roughness value about 1000 times higher than control surfaces. The results showed that, after 7 weeks, the GNP composite reduced the biofilm wet weight (by 44%), biofilm thickness (by 54%), biovolume (by 82%), and surface coverage (by 64%) of cyanobacterial biofilms compared to the epoxy resin. Likewise, the GNP-modified surface delayed cyanobacterial biofilm development, modulated biofilm structure to a less porous arrangement over time, and showed a higher antifouling effect at the biofilm maturation stage. Overall, this nanocomposite seems to have the potential to be used as a long-term antifouling material in marine applications. Moreover, this multifactorial study was crucial to understanding the interactions between surface properties and cyanobacterial biofilm development and architecture over time

    Lateral force removal of fungal spores to demonstrate how surface properties affect fungal spore retention

    Get PDF
    Microbial biofouling on polymer surfaces can lead to their biodeterioration. This may result in deterioration of the surface, leading to cracking and fracturing. Fungal spores from Aspergillus niger 1957, Aspergillus niger 1988 and Aureobasidium pullulans were tested to determine their strength of attachment on three surfaces, p(γ-MPS-co-MMA), p(γ-MPS-co-LMA) and spin-coated poly(methyl methacrylate) (PMMAsc), using lateral force measurements. The results demonstrate that A. niger 1957 and A. niger 1988 spores were most easily removed from the p(γ-MPS-co-MMA) surface, which was the surface with the highest R a value. The A. niger 1957 and A. pullulans spores were most difficult to remove from the PMMAsc surface, which was the hardest surface. A. niger 1988 spores were the most difficult to remove from p(γ-MPS-co-LMA), the most hydrophobic surface. The results with A. pullulans were difficult to elucidate since the spores bound to all three surfaces and were removed with similar rates of force. The lateral force results demonstrate that spore attachment to a surface is a multi-factorial process, and independent surface and microbial factors influence spore binding. Thus, each environmental scenario needs to be considered on an individual basis, since a solution to one biofouling issue will probably not translate across to other systems. This article is part of the theme issue 'Nanocracks in nature and industry'
    • …
    corecore