900 research outputs found
CD21(int) CD23(+) follicular B cells express antigen-specific secretory IgM mRNA as primary and memory responses
This is the final version of the article. Available from Wiley via the DOI in this record.CD21(int) CD23(+) IgM(+) mouse follicular B cells comprise the bulk of the mature B-cell compartment, but it is not known whether these cells contribute to the humoral antibody response. We show using a direct RT-PCR method for antigen-specific VH, that FACS-sorted mouse CD21(int) CD23(+) B cells express specific secretory IgM VH transcripts in response to immunization and also exhibit a memory response. The secretory IgM expressed is distinct from the IgG expressed by cells of this phenotype, which we also analyse here, having a distinct broader distribution of CDR-H3 sequences and zero or low levels of somatic mutation in the region analysed. These results imply that cells of the CD21(int) CD23(+) phenotype have distinct IgM(+) and IgG(+) populations that contribute directly to the humoral antibody and memory responses by expressing antigen-specific secretory immunoglobulin. We also argue that the more diverse CDR-H3 sequences expressed by antigen-experienced IgM(+) CD21(int) CD23(+) follicular B cells would place them at the bottom of a recently hypothesized memory B-cell hierarchy.This work was funded by Wellcome Trust grant 062578
Higher levels of B-cell mutation in the early germinal centres of an inefficient secondary antibody response to a variant Influenza Haemagglutinin
This is the final version. Available from the publisher via the DOI in this record.Designing improved vaccines against mutable viruses such as Dengue and Influenza would be helped by a better understanding of how the B-cell memory compartment responds to variant antigens. Towards this we have recently shown after secondary immunization of mice with a widely variant Dengue envelope protein, with only 63% amino-acid identity, that IgM+ memory B-cells with few mutations supported an efficient secondary germinal centre (GC) and serum response, superior to a primary response to the same protein. Here, further investigation of memory responses to variant proteins, using more closely related Influenza haemagglutinins (HA), that were 82% identical, produced a variant-induced boost response in the GC dominated by highly mutated B-cells that failed, not efficiently improving serum avidity even in the presence of extra adjuvant, and that was worse than a primary response. This supports a hypothesis that over certain antigenic differences, cross-reactive memory B-cell populations have reduced competency for affinity maturation. Combined with our previous observations these findings also provide new parameters of success and failure in antibody memory responses. This article is protected by copyright. All rights reserved.Wellcome TrustBiotechnology and Biological Sciences Research Council (BBSRC
Variant proteins stimulate more IgM+ GC B-cells revealing a mechanism of cross-reactive recognition by antibody memory
This is the final version. Available from eLife Sciences Publications via the DOI in this recordVaccines induce memory B-cells that provide high affinity secondary antibody responses to identical antigens. Memory B-cells can also re-instigate affinity maturation, but how this happens against antigenic variants is poorly understood despite its potential impact on driving broadly protective immunity against pathogens such as Influenza and Dengue. We immunised mice sequentially with identical or variant Dengue-virus envelope proteins and analysed antibody and germinal-centre (GC) responses. Variant protein boosts induced GCs with a higher proportion of IgM+ B cells. The most variant protein re-stimulated GCs with the highest proportion of IgM+ cells with the most diverse, least mutated V-genes and with a slower but efficient serum antibody response. Recombinant antibodies from GC B-cells showed a higher affinity for the variant antigen than antibodies from a primary response, confirming a memory origin. This reveals a new process of antibody memory, that IgM memory cells with fewer mutations participate in secondary responses to variant antigens, demonstrating how the hierarchical structure of B-cell memory is used and indicating the potential and limits of cross-reactive antibody based immunity.Funder: Wellcome Trust; Grant reference number 100115/Z/12/
Age-related changes to the neural correlates of working memory which emerge after midlife
Previous research has indicated that the neural processes which underlie working memory change with age. Both age-related increases and decreases to cortical activity have been reported. This study investigated which stages of working memory are most vulnerable to age-related changes after midlife. To do this we examined age-differences in the 13 Hz steady state visually evoked potential (SSVEP) associated with a spatial working memory delayed response task. Participants were 130 healthy adults separated into a midlife (40-60 years) and an older group (61-82 years). Relative to the midlife group, older adults demonstrated greater bilateral frontal activity during encoding and this pattern of activity was related to better working memory performance. In contrast, evidence of age-related under activation was identified over left frontal regions during retrieval. Findings from this study suggest that after midlife, under-activation of frontal regions during retrieval contributes to age-related decline in working memory performance. © 2014 Macpherson, White, Ellis, Stough, Camfield, Silberstein and Pipingas
Hypothesis: Control of hepatic utilization of alanine by membrane transport or by cellular metabolism?
The rate of alanine transport into the liver limits its utilization even under the high alanine load resulting from a 90% casein diet, given that the rat has been adapted to that diet. A coordinated acceleration of alanine catabolism allows transport to remain ratelimiting. which in turn allows the adaptive regulation of transport to remain effective at high alanine loads. Accelerated degradation of alanine may change the hepatic amino acid content in a way that derepresses the activity of the alanine carrier system(s).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44189/1/10540_2005_Article_BF01140659.pd
The Human Cytomegalovirus Major Immediate-Early Proteins as Antagonists of Intrinsic and Innate Antiviral Host Responses
The major immediate-early (IE) gene of human cytomegalovirus (CMV) is believed to have a decisive role in acute infection and its activity is an important indicator of viral reactivation from latency. Although a variety of gene products are expressed from this region, the 72-kDa IE1 and the 86-kDa IE2 nuclear phosphoproteins are the most abundant and important. Both proteins have long been recognized as promiscuous transcriptional regulators. More recently, a critical role of the IE1 and IE2 proteins in counteracting non-adaptive host cell defense mechanisms has been revealed. In this review we will briefly summarize the available literature on IE1- and IE2-dependent mechanisms contributing to CMV evasion from intrinsic and innate immune responses
Deep sequencing evidence from single grapevine plants reveals a virome dominated by mycoviruses
We have characterized the virome in single grapevines by 454 high-throughput sequencing of double-stranded RNA recovered from the vine stem. The analysis revealed a substantial set of sequences similar to those of fungal viruses. Twenty-six putative fungal virus groups were identified from a single plant source. These represented half of all known mycoviral families including the Chrysoviridae, Hypoviridae, Narnaviridae, Partitiviridae, and Totiviridae. Three of the mycoviruses were associated with Botrytis cinerea, a common fungal pathogen of grapes. Most of the rest appeared to be undescribed. The presence of viral sequences identified by BLAST analysis was confirmed by sequencing PCR products generated from the starting material using primers designed from the genomic sequences of putative mycoviruses. To further characterize these sequences as fungal viruses, fungi from the grapevine tissue were cultured and screened with the same PCR probes. Five of the mycoviruses identified in the total grapevine extract were identified again in extracts of the fungal cultures
Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model
Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children
On the status and mechanisms of coastal erosion in Marawila Beach, Sri Lanka
Coastal erosion remains a problem in many developing countries because of a limited understating of erosion mechanisms and management. Sri Lanka is one of the countries that recognized coastal erosion management as a governmental responsibility, in 1984. Nevertheless, erosion mechanisms have not yet been fully understood. We investigate the status and mechanisms of coastal erosion using empirically collected data and various techniques, such as Geographic Information System analysis of satellite images, drone mapping, bathymetric surveys, hindcasting of wind-induced wave climate, questionnaires, and semi-structured interview surveys. We identified wave climate change, reduction in river sand supply, interruptions from previous erosion management measures, and offshore sand mining as potential causes of erosion considering sediment flux and rates of erosion. Erosion of Marawila Beach began during 2005–2010 and has been continuing ever since, due to a lack of integration in the beach and the entire sediment system. It is necessary to identify the long-term, large-scale changes in the sediment system through data collection. This study highlights the importance of an integrated coastal erosion management plan and could facilitate better coastal erosion management in Sri Lanka, as well as in other developing countries
- …