1,963 research outputs found
Investigation of Spatial and Temporal Aspects of Airborne Gamma Spectrometry: Final Report
A study has been conducted which demonstrates the reproducibility of Airborne Gamma-ray Spectrometry (AGS)
and the effects of changes in survey parameters, particularly line spacing. This has involved analysis of new data collected from estuarine salt marsh and upland areas in West Cumbria and SW Scotland during three phases of field work, in which over 150000 spectra were recorded with a 16 litre NaI(Tl) detector. The shapes and inventories of radiometric features have been examined. It has been shown that features with dimensions that are large relative to the survey line spacing are very well reproduced with all line spacings, whereas smaller features show more variability. The AGS technique has been applied to measuring changes in the radiation environment over a range of time scales from a few days to several years using data collected during this and previous surveys of the area.
Changes due to sedimentation and erosion of salt marshes, and hydrological transportation of upland activity have
been observed
137Cs measurement uncertainties and detection limits for airborne gamma spectrometry (AGS) data analysed using a spectral windows method
The uncertainties associated with airborne gamma spectrometry (AGS) measurements analysed using a spectral windows method, and associated detection limits, have been investigated. For individual short measurements over buried 137Cs activity detection limits of are achieved. These detection limits are reduced for superficial activity and longer integration times. For superficial activity, detection limits below are achievable. A comparison is made with the detection limits for other data processing methods
Field-induced gap in the spin-1/2 antiferromagnetic Heisenberg chain: A density matrix renormalization group study
We study the spin-1/2 antiferromagnetic Heisenberg chain in both uniform and
(perpendicular) staggered magnetic fields using the density-matrix
renormalization-group method. This model has been shown earlier to describe the
physics of the copper benzoate materials in magnetic field. In the present
work, we extend the study to more general case for a systematic investigation
of the field-induced gap and related properties of the spin-1/2
antiferromagnetic Heisenberg chain. In particular, we explore the high magnetic
field regime where interesting behaviors in the field-induced gap,
magnetization, and spin correlation functions are found. Careful examination of
the low energy properties and magnetization reveals interesting competing
effects of the staggered and uniform fields. The incommensurate behavior in the
spin correlation functions is demonstrated and discussed in detail. The present
work reproduces earlier results in good agreement with experimental data on
copper benzoate and predicts new interesting field-induced features at very
high magnetic field.Comment: 8 pages, 6 figure
The Gold Flat Tuff, Nevada:Insights into the evolution of peralkaline silicic magmas
The Gold Flat Tuff is the youngest (9.15 Ma) ash-flow sheet erupted from the Black Mountain Volcanic Centre, southwest Nevada, USA. This paper explores some aspects of the very complex nature of the tuff's magmatic plumbing system. The main body of the deposit is a mixed magma product, comprising pantelleritic and comenditic melts derived from independently evolving reservoirs, and antecrysts and enclaves derived from a range of basic to intermediate sources. Metre-scale cognate xenoliths point to the presence of alkali feldspar accumulation zones. The pantellerite contains phenocrysts of fluorite and chevkinite-(Ce). The inferred intermediate magma component contains perrierite-(Ce) phenocrysts. The pantellerite has unusually high contents of F (≤2.2 wt%), F + Cl (≤2.9 wt%) and ZrO 2 (≤1.04 wt%). The high halogen contents may have influenced the evolution of the strongly peralkaline magma. The crystallization conditions are poorly constrained but those for the pantelleritic magma may have been close to water-saturation (>4 wt% melt water) at temperatures ~740 °C and fO 2 around FMQ
Recommended from our members
Phospholipid fatty acid analysis as part of the Yucca Mountain Project. Final report
In support of the Yucca Mountain subsurface microbial characterization project phospholipid fatty acid (PLFA) analyses for viable microbial biomass, community composition and nutritional status were performed. Results showed a positive correlation between a decrease in viable biomass and increase in depth with the lowest biomass values being obtained from the Topopah Spring geologic horizon. A plot of the ratio of non-viable (diglyceride fatty acids) to viable (PLFA) cells also showed the lowest values to derive from the Topopah Spring horizon. Estimations of microbial community composition, made from the patterns of PLFA recovered from the sediment samples, revealed similarities between samples collected within the same geologic horizons: Tiva Canyon, Pre-Pah Canyon and Topopah Spring. Results indicated the presence of mixed communities composed of gram positive, gram negative, actinomycete and obligate anaerobic bacteria. Culturable organisms, recovered from similar sediments, were representative of the same bacterial classifications although gram positive bacterial isolates typically outnumbered gram negative isolates. Within the gram negative bacterial community, corroborative indicators of physiological stress were apparent in the Topopah Spring horizon
Recommended from our members
Quantitative comparison of the in situ microbial communities in different biomes
A system to define microbial communities in different biomes requires the application of non-traditional methodology. Classical microbiological methods have severe limitations for the analysis of environmental samples. Pure-culture isolation, biochemical testing, and/or enumeration by direct microscopic counting are not well suited for the estimation of total biomass or the assessment of community composition within environmental samples. Such methods provide little insight into the in situ phenotypic activity of the extant microbiota since these techniques are dependent on microbial growth and thus select against many environmental microorganisms which are non- culturable under a wide range of conditions. It has been repeatedly documented in the literature that viable counts or direct counts of bacteria attached to sediment grains are difficult to quantitative and may grossly underestimate the extent of the existing community. The traditional tests provide little indication of the in situ nutritional status or for evidence of toxicity within the microbial community. A more recent development (MIDI Microbial Identification System), measure free and ester-linked fatty acids from isolated microorganisms. Bacterial isolates are identified by comparing their fatty acid profiles to the MIKI database which contains over 8000 entries. The application of the MIKI system to the analysis of environmental samples however, has significant drawbacks. The MIDI system was developed to identify clinical microorganisms and requires their isolation and culture on trypticase soy agar at 27{degrees}C. Since many isolates are unable to grow at these restrictive growth conditions, the system does not lend itself to identification of some environmental organisms. A more applicable methodology for environmental microbial analysis is based on the liquid extrication and separation of microbial lipids from environmental samples, followed by quantitative analysis using gas chromatography
Non-perturbative effective field theory for two-leg antiferromagnetic spin ladders
We study the long wavelength limit of a spin 1/2 Heisenberg antiferromagnetic
two-leg ladder, treating the interchain coupling in a non-perturbative way. We
perform a mean field analysis and then include exactly the fluctuations. This
allows for a discussion of the phase diagram of the system and provides an
effective field theory for the low energy excitations. The coset fermionic
Lagrangian obtained corresponds to a perturbed SU(4)_1/U(1) Conformal Field
Theory (CFT). This effective theory is naturally embedded in a SU(2)_2 x Z_2
CFT, where perturbations are easily identified in terms of conformal operators
in the two sectors. Crossed and zig-zag ladders are also discussed using the
same approach.Comment: 14 pages LaTeX, 5 PostScript figures included using epsfig.sty; minor
corrections and a few references adde
A Monte Carlo Study of Correlations in Quantum Spin Ladders
We study antiferromagnetic spin--1/2 Heisenberg ladders, comprised of
chains () with ratio of inter-- to
intra--chain couplings. From measurements of the correlation function we deduce
the correlation length . For even , the static structure factor
exhibits a peak at a temperature below the corresponding spin gap. Results for
isotropically coupled ladders () are compared to those for
the single chain and the square lattice. For , the
correlation function of the two--chain ladder is in excellent agreement with
analytic results from conformal field theory, and exhibits simple
scaling behavior.Comment: 4 pages, 5 EPS figures, submitted to Phys. Rev. Let
Correlation Amplitudes for the spin-1/2 XXZ chain in a magnetic field
We present accurate numerical estimates for the correlation amplitudes of
leading and main subleading terms of the two- and four-spin correlation
functions in the one-dimensional spin-1/2 XXZ model under a magnetic field.
These data are obtained by fitting the correlation functions, computed
numerically with the density-matrix renormalization-group method, to the
corresponding correlation functions in the low-energy effective theory. For
this purpose we have developed the Abelian bosonization approach to the spin
chain under the open boundary conditions. We use the numerical data of the
correlation amplitudes to quantitatively estimate spin gaps induced by a
transverse staggered field and by exchange anisotropy.Comment: 18 pages, 6 figures, 1 tabl
- …